Fényképgaléria

neutroncsillagok nagy mennyiségű szabad neutront tartalmazó maradványcsillagok.

Nagy sűrűségeknél a csillagok belsejében azatommagok befogják a szabad elektronokat, ezáltal neutronban gazdagabb atommagok keletkeznek. A 12A56 atommagok esetében ez a folyamat a 1011ρ1014 g/m³ sűrűségtartományban zajlik. Ahogy az atommagokban egyre több neutron keletkezik, ezek kötési energiája negatív lesz, így ρ>~1015 kg/m³ sűrűségnél a fehér törpéket alkotó atommagok és szabad elektronok helyett kevés magot, elektront, és nagy mennyiségű szabad neutront tartalmazó degenerált gáz jön létre. Ezért a 1016 – 1018 kg/m³ sűrűséggel rendelkező kompakt objektumot neutroncsillagnak nevezzük. Egy ilyen objektumot gyakorlatilag úgy tekinthetünk, mint ami kizárólag neutronból áll. Ez a konfiguráció egy hatalmas atommaghoz hasonlítható, melynek tömegszáma A~1057 és a Z/A~10-2. A gravitációs nyomást a neutronok rövid hatósugarú nukleáris taszítóereje egyenlíti ki. Egy a mi Napunkéval megegyező tömeggel rendelkező neutroncsillag átmérője kb. 20 km, ezért optikai távcsövekkel lehetetlen megfigyelni.

Vannak neutroncsillagok, melyek rádióhullámokat keltenek, elsősorban a gamma- ésröntgentartományban. Ezeket pulzároknak nevezzük. A szokásosnál erősebb mágneses térrelrendelkező neutroncsillagok a magnetárok.

Az eddig ismert legnagyobb sebességgel mozgó csillag az RX J0822-4300 jelű neutroncsillag, amely a Chandra űrtávcső felvételei alapján végzett számítások szerint egy szupernóva-robbanás[1]-tól hajtva óránként 5,5 millió kilométeres sebességgel halad.[2]

 

A neutroncsillagok tulajdonságai[]

Egy tipikus neutroncsillag felszínén tapasztalható gravitációs mező megközelítően 2x1011-szer erősebb, mint a Föld felszínén. Ennek megfelelően a szökési sebesség elérheti a 100 000 km/s értéket, azaz a fénysebesség egyharmadát. A mező ereje gravitációs lencsehatást okoz, mely a csillag saját fényét is eltéríti. Ez azt a hatást okozza, hogy a csillag felszínének több mint a fele látható, bármely irányból is figyeljük meg azt.[3]

Kezdetben a csillag belsejében 100 milliárd K hőmérséklet uralkodik, de a neutrínók kisugárzása mindössze egy év alatt 1 millió kelvinre csökkenti a felszín hőmérsékletét, ami innentől kezdve lassabb ütemben hűl, mert addigra a neutrínók áramlása gyakorlatilag megszűnik.

Az előd csillag magja a szupernóvarobbanás során összeroppan, mérete jelentősen csökken, és mivel az összeomlásakor se a mágneses energiája, se a perdülete nem változhat meg, a robbanásban keletkezett neutroncsillag szédítő sebességgel forog, és óriási mágneses tere van. Az eddig mért leggyorsabb forgást 716 Hz frekvenciával a PSR J1748-2446ad elnevezésű neutroncsillagnál mérték.[4]A stabilitási határt a centrifugális erő határozza meg, ez megközelítőleg 1000 Hz frekvenciánál van. Mivel a hátramaradt neutroncsillag sugárzása révén további energiát táplál a maradványködbe, az még évezredekig látható marad. A köd általában középen a legfényesebb és a szélei felé halványabb. Ezeket plerion típusú ködöknek hívjuk, amelyeknek legismertebb példája a Rák-köd.[5]

A neutroncsillag tömege az elméleti számítások szerint 1-3 naptömeg közötti. Ha nagyobb tömegű lenne, a degenerált neutronok nem lennének képesek megtartani a súlyt és összeroppanva fekete lyuk jönne létre. A megfigyelt két legnagyobb tömegű neutroncsillag tömege 1,94 és 2,74 naptömeg, így ezek az adatok nem mondanak ellent a számításoknak.

A neutroncsillag átmérője (ugyancsak számítások alapján) nagyjából 20 km.

A csillagok légköre ionizált gáz, amiben a mágneses tér nehezen mozdul el. A csillag összeomlásakor a mágneses tér kisebb térfogatra préselődik össze, így az erőssége a kiinduló állapot milliárdszorosa lehet. Mivel néhány csillag mágneses tere már eleve ezerszer erősebb a Napunkénál, ezért a végeredményként kialakuló neutroncsillag mágneses tere trilliószorosa lesz a Napunkénak.

Belső felépítés[]

Egy átlagos, 1,5 naptömegű, 20 km átmérőjű neutroncsillag héjas szerkezetű. A felszínén a szabad neutronok instabilak lennének, így itt csak elektronok és vasatommagok találhatók, mely utóbbiakkristályszerkezetet alkotnak. A rendkívül erős gravitáció miatt itt legfeljebb néhány milliméter magas kiemelkedések maradhatnak fenn. A forró plazmából álló légkör legfeljebb egy méter vastag lehet.

Megközelítőleg 10 méter mélység után elegendő a nyomás ahhoz, hogy a szabad neutronok is stabilakká váljanak. Innentől kezdődik az 1-2 km vastag belső kéreg, ahol a kristályos atommagok szabad elektronokkal és a neutronok keverednek. A mélység növekedésével a vastartalom egyre csökken, míg a neutronok aránya ennek megfelelően nő.

 

 

 

 

 

pulzár gyorsan forgó neutroncsillag, mely erős mágneses térrel rendelkezik (kb. 1011 – 1012 Gauss, ami valamivel kisebb, mint a magnetárok esetében).

Főleg szupernóva robbanások után jön létre, de olyan fehér törpe csillagokból is kialakulhat, amelyek elég sok anyagot gyűjtenek össze környezetükből, hogy bekövetkezzen agravitációs összeomlás.

A pulzálás olyan neutroncsillagoknál lép fel, amelyeknél amágneses tengely nem esik egybe a forgási tengellyel. Ahogy a környezetükből (gyakran egy ritkább légkörű kísérő csillagról) befogott anyag a mágneses pólusoknál zuhan a csillag felé, röntgensugarak formájában nagy mennyiségű energia szabadul fel egy kúp alakú térrészben. A mágneses pólusokról érkező röntgensugarak a tengelyforgás miatt egy távoli megfigyelő számára periodikus pulzálásként látszanak.

Az egyik legismertebb ilyen égitest az 1968-ban felfedezett Crab-pulzár, az égbolt legerősebb gamma-sugárzás forrása. Periódusa 33 ezredmásodperc, és forgása folyamatosan lassul. Ez volt az első ismert pulzár.

A pulzárok egy osztálya a miliszekundumos pulzárok, melyek másodpercenként több száz fordulatot tesznek. Nagy forgási sebességüket az őket tápláló kísérőcsillagról eredő akkréciós korong perdületeadja, a korong pulzárra zuhanó anyaga a pulzárhoz közeledve ugyanis egyre gyorsabban forog. Az akkréciós korong a pulzár rádiósugárzását leárnyékolja, emiatt a pulzár az anyagátadás közben még nem látszik. (Ekkor például röntgenkettősként látszik az objektum.) Amikor az anyagátadás befejeződik, az akkréciós korong elfogy, és feltűnik a gyorsan, de fokozatosan lassulva forgó pulzár.

 

A forgási periódus lassulás

Az Alicante Egyetem kutatóinak megfigyelései szerint az önálló, röntgensugárzó pulzárok forgási periódusának ciklusideje legfeljebb 10-12 másodperc lehet. Az újonnan keletkező pulzárok igen gyorsan, másodpercenként akár 100 fordulatot megtéve forognak. Ezt a forgást a neutroncsillag belsejében lévő elfajult anyag mágneses hatása állandóan fékezi, így a pulzár lassú mértékben, de állandóan lassul. A fékezőhatást előidéző erő azonban fokozatosan csökken, majd megszűnik, így a lassulás megáll.[4]

 

A pulzárok tulajdonképpen nagyon gyorsan forgó neutroncsillagok. Felszínükön százmilliárdszor akkora a gravitációs gyorsulás, mint a Földön, ennek ellenére rendkívül gyorsan pörögnek. Akár 600 fordulatot is megtehetnek másodpercenként (milliszekundumos pulzárok), de általában folyamatosan lassulnak. A forgás közben - felszíni mágneses zavarok miatt - sugárzást bocsátanak ki, így - mivel a forgástengely és a mágneses tengely általában nem esik egybe - folyamatosan körbe-körbe pásztázzák az égboltot, hasonlóan egy tengert pásztázó világítótoronyhoz.

Az egyik legismertebb pulzár a Rák-pulzár, amelyet a szupernóva robbanással keletkezett Rák-ködben találhatunk meg. Ez nem véletlen: a pulzárok nagyrészt szupernóva robbanással megsemmisült csillagok maradványaként keletkeznek. A csillag anyagának nagy részét ledobja magáról, magja viszont összeroppan és kialakul a neutroncsillag. Ezt gondolta századunk végéig a legtöbb csillagász a rádiópulzárokról.

A pulzárok tulajdonképpen nagyon gyorsan forgó neutroncsillagok. Felszínükön százmilliárdszor akkora a gravitációs gyorsulás, mint a Földön, ennek ellenére rendkívül gyorsan pörögnek. Akár 600 fordulatot is megtehetnek másodpercenként (milliszekundumos pulzárok), de általában folyamatosan lassulnak. A forgás közben - felszíni mágneses zavarok miatt - sugárzást bocsátanak ki, így - mivel a forgástengely és a mágneses tengely általában nem esik egybe - folyamatosan körbe-körbe pásztázzák az égboltot, hasonlóan egy tengert pásztázó világítótoronyhoz.

Az egyik legismertebb pulzár a Rák-pulzár, amelyet a szupernóva robbanással keletkezett Rák-ködben találhatunk meg. Ez nem véletlen: a pulzárok nagyrészt szupernóva robbanással megsemmisült csillagok maradványaként keletkeznek. A csillag anyagának nagy részét ledobja magáról, magja viszont összeroppan és kialakul a neutroncsillag. Ezt gondolta századunk végéig a legtöbb csillagász a rádiópulzárokról.

 

 

  •  A periódus hossza 4 s-tól 1,6 ms-ig (1.6*10-3 s) terjed. (A leggyorsabbakat milliszekundumos pulzároknak nevezzük)

     A pulzár felszíne nem foroghat gyorsabban a fény sebességénél.

    Ebből adódik a következő levezetés:

    2R < fénysebesség * periódusidő

  •                                     R < (fénysebesség * periódusidő) / (2)

                        R < (3*108 m/s)*(1.6*10-3 s) / (2)

             R < 8*104 m = 80 km 
     

              80 km-nél kisebb sugárral túl kicsi ahhoz, hogy fehér törpe legyen.

              A fekete lyukaknál nem igazán feltételezünk felszínt, ami foroghat.

    Így csak a neutroncsillagok maradnak lehetőségül.

    Miért észlelünk csak "villanásokat" egy pulzárból?

    3. ábra. A forgástengely és a mágneses tengely nem esik egybe.

    Ha a pulzár forgástengelye és mágneses tengelye nem esik egyvonalba, akkor a rajtuk lezajló gigantikus mágneses viharokból kitörő rádiósugárzás minden fordulat alkalmával egyszer végigsöpör az űrön, így néha a Földön is. (Hasonlóan a világítótoronyhoz, ami "végigpásztázza" a környéket.) Ezeket a rádiójeleket tudjuk mi is fogni, több millió fényévnyi távolságból is.

    A pulzár a rádiósugárzás hatására veszít energiájából, így forgási sebességéből is. Ezt precíz műszerekkel ki is lehet mutatni.

    Milliszekundumos pulzárok

     Az utóbbi időben született egy-két új feltételezés a pulzárok eredetét illetően. 1982-ben Donald C. Backer és munkatársai a Kaliforniai Egyetemen felfedezték az 1937+214 névre keresztelt rádiópulzárt. A furcsa az egészben az volt, hogy ennek a neutroncsillagnak a periódus-ideje mindössze 1.558 ezredmásodperc. Tudták, hogy a pulzárok rendkívül gyorsan forognak, de ilyen iszonyatosan sebesen pörgő pulzárt még soha nem láttak. Később felfedeztek egy 6.13 ezredmásodperc (1953+29) és egy 5.362 ezredmásodperc (1855+09) periódusú pulzárt is. Nyilvánvalóvá vált: ki kell bővíteni a pulzárok osztályát, létezik egy milliszekundumos periódusidejű csoport is. A különböző mérések alapos analizálása után azt találták, hogy ezek a szupergyors pulzárok folyamatosan tartják a sebességüket, szinte nem is lassulnak. A múltban pedig nem nagyon lassulhattak, hiszen ha csak nagyjából kétszer gyorsabban forogtak volna valamikor, akkor darabokra tépte volna őket a centrifugális erő. Ha viszont egy pulzár nem lassul számottevő mértékben, akkor nem lehet rajta erős mágneses erőtér, hiszen ennek kisugárzása folyamatosan csökkentené a mozgási energiáját. Ezért a milliszekundumos rádiópulzároknak nem szabadott szupernóvarobbanással keletkezniük, mert ilyen körülmények között 100 millió Kelvinnél nagyobb hőmérsékletek mellett igen jelentős mágneses erőtér alakul ki. Úgy tűnt, vonták le a kutatók a következtetést, a milliszekundumos pulzároknak "hideg" körülmények között kellett keletkezniük.

    A megoldás hamar megszületett: ezek a pulzárok valamikor valódi pulzárok voltak, vagy pedig fehér törpék, de mindenképpen egy kettős rendszer tagjai. A valódi pulzár több évmilliárdnyi működés után kikapcsolt, halott pulzárrá változott. Így alakult ki felszínén a gyenge mágneses erőtér. Ekkor fokozatosan kezdte a kettős rendszer másik tagjának (egy normális csillagnak) anyagát elszívni, és ez a felszínére áramló anyagkorong gyorsította fel őrült sebességre. A másik esetben a fehér törpe elszívta társa anyagát, ezért elkezdett gyorsabban forogni, majd egy gravitációs összeomlás következtében a kis sebesség iszonyatosan felerősödött. Mindkét esetben kicsi a mágneses kisugárzás, így a pulzár hosszú időn, évmilliárdokon át képes tartani a sebességét. A társcsillagból a neutroncsillag felszínére áramló óriási mennyiségű plazma először a neutroncsillag körül egy akkréciós anyagkorongban kezd el keringeni, ezáltal jelentősen felgyorsítja a neutroncsillagot. Minél közelebb kerül ez a plazma a felszínhez, annál nagyobb sebességűre pörgeti fel a pulzárt.

    Ahhoz, hogy a plazma szinte a felszín felett áramoljon és így képes legyen milliszekundumos periódusidejűre felgyorsítani a neutroncsillagot, szükség van arra, hogy a neutroncsillag magnetoszférája gyenge legyen, és ne tudja messzire eltolni magától a plazmát. A gyenge magnetoszféra következménye a gyenge rádiójel kibocsátás, ezért kicsi az esély arra, hogy az ilyen égitesteket észre tudjuk venni. Azonban helyenként a plazma átszakítja a magnetoszférát és a felszínbe csapódik. Így másodpercenként körülbelül egytrillió tonna plazma csapódik neki a felszínnek és óriási hatásfokú, hatalmas termonukleáris robbanások közepette a plazma anyagának 20 %-a energiává alakul. Ezt az energiát a pulzár a röntgentartományban sugározza szét. Ezért várják a csillagászok, hogy a gyorsan forgó, kis tömegű, öreg kettősök röntgensugárzó források legyenek. Ez volt az elmélet, ám a gyakorlatban az elképzelést sokáig nem sikerült igazolni.

     

    •    

    • 4. ábra A tárcsillagról "begyűjtött" anyag felgyorsítja a pulzárt.

    fekete lyuk olyan égitest, amelynél a felszínre vonatkoztatott szökési sebesség eléri vagy meghaladja a fénysebesség értékét.[1] Létezésüket az általános relativitáselmélet támasztja alá. Fekete lyuk keletkezik akkor, ha egy véges tömeg a gravitációs összeomlásnak nevezett folyamat során egy kritikus értéknél kisebb térfogatba tömörül össze. Ekkor az anyag összehúzódását okozó gravitációs erő minden más anyagi erőnél nagyobb lesz, s az anyag egyetlen pontba húzódik össze. Ebben a pontban bizonyos fizikai mennyiségek (sűrűség, téridőgörbület) végtelenné válnak (lásd: gravitációs szingularitás). A szingularitást körülvevő térrészben a gravitáció olyan erős, hogy onnan sem anyag, sem fény nem szabadulhat ki. E gömb alakú térrész határfelülete azeseményhorizont, sugara az ún. Schwarzschild-sugár. Az eseményhorizonton belülre kerülő anyag vagy sugárzás belezuhan a szingularitásba.

    A fekete lyukak létezése mind elméletileg, mindcsillagászati megfigyelésekkel jól alátámasztott (például Chandra űrtávcső). A lyuk elnevezés alatt nem a szokásos értelemben vett lyukat kell érteni, inkább a világűr egy részét, ami mindent elnyel, és ahonnan semmi nem tud visszatérni.

    Másképpen, a fekete lyuk olyan égitest, mely – hatalmas sűrűségénél fogva – nagy tömege ellenére elég kicsi, hogy elférjen az általa létrehozotteseményhorizonton belül. Ebben az esetben ugyanis az égitest minden pontja az eseményhorizonton belül van, tehát az eseményhorizonton kívülről nem látható.

    A fekete lyuk sokak szerint új univerzumok vagy dimenziók szülőhelye, az elméletileg lehetségesidőutazás, vagy a fénynél gyorsabb utazás eszköze lehet. Mások szerint végtelen energiaforrás, ami mindenhol a galaxisban rendelkezésre áll.

     

    A fekete lyukak fizikai tulajdonságai[]

    A fekete lyuk körül akkréciós korongot képez a körülötte keringő fősorozati csillagból belé áramló anyag (az akkréciós korong nem ér el azeseményhorizontig, a legbelső stabil körpálya (ISCO) elérése után belezuhan a lyukba). Az akkréciós korongra merőlegesen, annak két oldalán poláris jetek alakulnak ki.

    Mivel a beléjük zuhanó anyag gyakorlatilag elveszíti szerkezetét, a fekete lyukaknak mindössze három, egymástól független tulajdonságuk van: tömegük, forgási sebességük és (elméletileg előrejelzett, a természetben elő nem forduló) elektromos töltésük.

    A fekete lyukak tömege

    Egyes, kísérletileg még nem bizonyított elméletek szerint bizonyos magfizikai folyamatok soránmikroszkopikus fekete lyukak keletkezhetnek.

    Nagy tömegű csillagok egyik lehetséges végállapotaként, szupernóva-robbanás után a csillagmaradvány tömegétől függően fekete lyuk vagyneutroncsillag keletkezhet. A fekete lyuk keletkezéséhez elég nagy tömegű csillag szükséges, hogy még a belőle keletkezett neutroncsillag is összeroppanjon. Ez a tömeg jelenlegi ismereteink szerint valahol 1,7-2,7 naptömeg között van, a legkisebb ismert tömegű fekete lyuk 3,8 (±0,5) naptömegű.[4] Ha viszont a csillag tömege túl nagy (20-40 naptömeg feletti), akkor még a szupernóva-robbanás előtt a csillagszéllel annyi anyagot veszít, hogy a maradék tömege nem elég a fekete lyuk létrejöttéhez, így nagyon gyorsan forgó és nagyon erős mágneses térrel rendelkező neutroncsillagok,magnetárok jönnek létre.

    Több kisebb fekete lyuk ütközésével jöhetnek létre a sokáig keresett köztes tömegű fekete lyukak, ezek tömege néhány száz-néhány ezer naptömeg. Egyelőre nagyon kevés ilyen fekete lyukat ismerünk, az NGC 4472 galaxis egyik gömbhalmazában (valószínűleg a közepén) van ilyen fekete lyuk.[5] Az NGC 5408 galaxisban lévő egyik ultrafényes röntgenforrás (ULX, Ultra Luminous X-ray source) tömegét egy új módszerrel megmérve 2000 naptömegnyinek adódott[6], így ez is ebbe a ritka csoportjába tartozik a fekete lyukaknak. Az ultrafényes röntgenforrásokat általában a kutatók a köztes tömegű fekete lyukakkal hozzák összefüggésbe.

    Egyes galaxisok középpontja (a miénk is) tartalmaz nagyon nagy tömegű (több millió naptömegű)szupermasszív fekete lyukat.

    A fekete lyukak tömegének mérése[]

    A fekete lyukak tömegét akkor tudjuk pontosan meghatározni, ha a körülötte keringő csillagközi anyagfelhők, csillaghalmazok vagy csillagok mozgása, azaz pályamérete és sebessége is megmérhető.

    A fekete lyukak forgása

    A fekete lyukak forgási sebességéről nagyon keveset tudunk, egyelőre csak néhány égitestről rendelkezünk adatokkal. A forgás sebességét a*-gal jelöljük, ennek értéke 0, ha a fekete lyuk nem forog, 1 pedig akkor, ha az égitest az általános relativitáselmélet által megengedett legnagyobb sebességgel forog. Az eddig megmért forgási sebességű fekete lyukak esetében a* mindig 0,95 fölötti értéknek adódott, például a GRS 1915+105 jelű objektumnál a* 0,98, ez másodpercenként több mint 950 fordulatot jelent.[7]

    A fekete lyukak forgási sebességének mérése

    A megfigyelhető fekete lyukakba az akkréciós korongon keresztül folyamatosan anyag áramlik (ennek sugárzása árulja el számunkra a fekete lyuk létét). Az izzó gáz egyre közelebb kerül az égitesthez, majd belezuhan. A zuhanás előtti, legbelső stabil körpálya (ISCO, Innermost Stable Circular Orbit), melyen az anyag keringhet, összefüggésben van a lyuk forgási sebességével, mert a fekete lyuk forgása közben magával rántja a téridő-kontinuum egy darabját is (ez az egyetlen olyan fizikai hatás a külvilágra, mely a forgással van kapcsolatban). A legbelső stabil körpálya sugarának méréséből következtethetünk a fekete lyuk forgási sebességére, minél gyorsabban forog a lyuk, annál kisebb ez a sugár (lyukkal forgó téridő mintegy magával rántja a befelé áramló anyagot, emiatt az gyorsabban keringve a fekete lyukhoz sokkal közelebb juthat anélkül, hogy belezuhanna).

    A legbelső stabil körpálya sugarát a benne áramló anyag hőmérsékletének (erre az általa kibocsátott röntgensugárzás színképének elemzésével következtetnek), vagy a benne lévő anyag egyes jellegzetes színképvonalai eltolódásának (melyet a gravitációs vöröseltolódás okoz) mérésével végzik.

    A fekete lyukak párolgása

    Cygnus X-1, egy kettőscsillag egyik komponense az egyik elsőnek azonosított fekete lyuk (és egyben fényes röntgenforrás) és a körülötte lévő akkréciós korong, fantáziarajzon

    S.Hawking kimutatta 1974-ben, hogy a fekete lyuk környezetében a lyuk tömegének rovására részecskék keletkezhetnek (az energia átalakulanyaggá), ezáltal a lyuk tömege csökkenhet. Ez az anyagkeletkezés annál intenzívebb, minél kisebb a lyuk tömege. A tudósról Hawking-sugárzásnak elnevezett jelenség révén, ahogy a lyuk egyre kisebbé válik, úgy lesz az anyagkibocsátás egyre erősebb, míg végül a lyuk robbanásszerű hevességgel eltűnik. A fekete lyukba belekerülő anyag és sugárzás viszont a lyuk tömegét növeli. Ez ellensúlyozza az anyagkibocsátást, egészen addig, amíg a világegyetem hőmérséklete (2,7 kelvines kozmikus mikrohullámú háttérsugárzás) a fekete lyuk felszíni hőmérséklete felett van (minél nagyobb tömegű a fekete lyuk, annál alacsonyabb, de – a viszonylag kis méreteket leszámítva – jóval 2,7 kelvin alatt, közel 0-hoz). Ez esetben viszonylag kis méret alatt azt kell érteni, hogy jelenleg holdunk tömegének megfelelő Schwarzschild-sugárral rendelkező fekete lyuk (azaz Holdunk tömegével megegyező tömegű fekete lyuk) van termikus egyensúlyban, ez az a méret, ahol ugyanannyi sugárzást bocsát ki a fekete lyuk, mint amennyit a háttérsugárzásból elnyelni képes (felszíni hőmérséklete éppen 2,7 kelvin). Ennél kisebb tömeg esetén a fekete lyuk (amennyiben csillagközi gáz, por, csillagfény vagy egyéb „pluszban nem táplálja”) tömege a párolgás miatt csökkenni fog, nagyobb tömeg esetén pedig akkor is tovább fog nőni, ha csak a háttérsugárzás táplálja (ha a tömeg úgymond csak egy kicsivel nagyobb a kérdéses határnál, akkor a tömegnövekedés ideje is kicsi lesz, mivel a háttérsugárzás hőmérséklete gyorsabban csökken, mint ahogy a csupán háttérsugárzás által táplált lyuk felszíni hőmérséklete csökkenni tud a tömegnövekedés hatására). A világegyetem tágulása miatt a világegyetemhőmérséklete folyamatosan csökken, nullához konvergál (örökké táguló világegyetem esetén), ami pedig azt jelenti, hogy egy idő után bármely fekete lyuk felszíni hőmérsékleténél alacsonyabb lesz, azaz egy idő után minden fekete lyuk tömege csökkenni kezd, végül teljesen elpárolog (örökké táguló világegyetem esetén (azért itt is előfordulhat elfajuló eset, például hiperbolikusan gyorsuló tágulás esetén a világegyetem mérete véges időn belül végtelen nagyra nőhet és nem biztos, hogy a fekete lyuknak lesz ideje elpárologni mielőtt a világegyetem „szétspriccel a végtelenbe…”; ha ez megtörténik, többé nincs értelme térről és időről beszélni ahogy a kérdéses fekete lyukról sem), zárt világegyetem esetében a helyzet a tágulás, majd az ezt követő összehúzódás paramétereitől, illetve a fekete lyuk tömegétől függ).

    sötét anyag olyan anyagfajta, amelycsillagászati műszerekkel közvetlenül nem figyelhető meg, mert semmilyenelektromágneses sugárzást nem bocsát ki és nem nyel el, jelenlétére csak a látható anyagra és a háttérsugárzásra kifejtettgravitációs hatásból következtethetünk. AzUniverzum tömegének csupán 4,6%-át alkotja a megfigyelhető anyag, 23% a sötét anyag aránya, és 72% a sötét energia.

     
    Az Ősrobbanás után a Világegyetemben található anyag, részben a sötét anyag gravitációs hatására, szálas elrendezésbe, filamentekbe szerveződött, a szálak mentén sűrűsödött a megfigyelhető anyag galaxisokká. A Millennium Run szuperszámítógépes szimuláció eredményéről készült kép.
     

    Elméleti felvetés[]

    A sötét anyag hatását először Fritz Zwickysvájci asztrofizikus tételezte fel 1934-ben a Coma galaxishalmaz vizsgálata közben. A galaxishalmaz szélén levő galaxisoksebességéből, és a galaxishalmaz fényességéből, valamint a galaxisok száma alapján két tömegbecslést adott. A kettőt összehasonlítva látta, hogy a sebességeloszlásból számított tömeg 400-szor nagyobb, mint a távcsővel mért. Ezért be kellett vezetni a sötét anyagot, ami távcsővel nem látszik, viszont elég nagy tömegű, hogy a megfigyelt sebességeloszlást magyarázza.

    Felfedezése]

    1970-ben Vera Rubin a Department of Terrestrial Magnetism (DTM) („földmágnesség”) osztályon dolgozott a Carnegie Institute of Washington intézetben. A DTM igazgatója, Kent Ford csillagász akkor alkotott meg egy új, nagy sebességű, széles spektrumú spektográfot, amivel egyetlen nap alatt 8-10 mérést lehetett elvégezni (az akkoriban használt műszerek csak napi 1 mérésre voltak képesek).

    1970. március 27-én Vera Rubin a DTM távcsövét az Androméda galaxisra irányította. Ellenőrizni szerette volna, hogy az Androméda milliónyi csillaga úgy mozog-e, ahogyan az elméletek leírják.

    A spektográf a csillagokban lévő kémiai elemeknek megfelelő hullámhosszakon vonalakat rajzolt egy papírra, amit Rubin mikroszkópon keresztül vizsgált. Ismert volt számára, hogy a kirajzolt vonalak annak megfelelően eltolódnak följebb vagy lejjebb a frekvenciaskálán, hogy az adott csillag felénk közeledik vagy távolodik-e, a Doppler-hatásnak megfelelően.

    Rubin kíváncsi volt rá, hogy a Doppler-hatás alapján meg tudja-e határozni a csillagok sebességét távoli galaxisokban.

    Azt tapasztalta, hogy az Androméda szélén lévő csillagok is épp olyan gyorsan mozogtak, ahogy a galaxis közepén lévők. Ez azonban nem felelt meg az elméletekből következő várakozásoknak.

    A következő két hónapban 200 mérést rögzített papíron. Minden más galaxis esetén is hasonló eredményt kapott. Az összes sebesség „hibás” volt. A fizika ismert törvényeinek megfelelve ezek a csillagok túl gyorsan mozogtak, jó néhányuk esetén a gravitáció nem lett volna elég, hogy a pályájukon tartsa őket, ki kellett volna repülniük a világűrbe. Ez azonban nem történt meg.

    Rubin számára két lehetséges ok kínálkozott:

    • Vagy Isaac Newton gravitációs törvényei rosszak (ezt a tudományos világ nehezen fogadta volna el)
    • Vagy az Univerzumban van olyan extra anyag, ami a visszahúzó erőért felelős, de a jelen csillagászati eszközökkel nem kimutatható.

    Rubin a második magyarázatot választotta, és a „fölös” anyagot sötét anyag-nak nevezte el (mivel nem volt látható, sem kimutatható).

    Számításai szerint a Világegyetem 90%-ban sötét anyagból áll. Elméletét 1975-ben ismertette az American Astronomical Society találkozóján.

    A tudományos világnak ennek az elméletnek az elfogadásához egy évtized kellett.[1]

    Megfigyelések]

    A sötét anyag jelenlétére jelenleg a következő megfigyelésekből következtethetünk:

    Alkotórészei alapján feloszthatjuk barionos és nem barionos sötét anyagra. A barionos sötét anyag lehet:

    • Csillagközi köd: távcsövekkel a csillagközi hidrogén ködökben csak az atomos hidrogént látjuk s ennek következtében az a hallgatólagos nézet alakult ki, hogy ezek a ködök atomos hidrogénből állnak. Azonban az alacsony hőmérsékletű hidrogén sokkal stabilabb molekuláris állapotban, viszont a molekuláris hidrogén jószerével láthatatlan. Elképzelhető, hogy az eddig is ismert hidrogénfelhők tömege a mostani vélekedés többszörösét teszi ki.
    • Kompakt objektum: fekete lyukfehér törpeneutroncsillagbarna törpe és a feltételezettkvarkcsillag
    • LSB-k (kicsi felszíni fényességű galaxis)
    • MACHO-k (nagy tömegű kompakt haloobjektum)

    A nembarionos sötét anyag lehet:

    A barionos és a nem barionos sötét anyag arányát a kozmikus háttérsugárzás fluktuációjából lehet megállapítani. Ennek alapján a sötét anyag nem barionos, és valószínűleg teljesen újfajta részecske.

    Lehetséges kimutatása[

    2008 tavaszán olasz fizikusok bejelentették, hogy a Gran Sasso csúcs alatti alagútban lévő DAMA projekt (Dark Matter) detektoraival valószínűleg sikerült a sötét anyag részecskéinek árama által kiváltott fizikai jelenségeket detektálni, ugyanis két független érzékelő által szolgáltatott adatokban kimutatták az 1980-as években elméletileg megjósolt éves ingadozást, amely azzal függ össze, hogyNap körüli pályáján a Föld fél évente a Nap galaxismag körüli mozgásával egyező, fél évenként pedig azzal ellentétes irányba mozog.[4]

    NASA Chandra űrtávcsőve pedig 2006-ban közvetett bizonyítékot talált a sötét anyag létezésére, aLövedék halmaz néven ismert ütköző galaxisok anyageloszlását vizsgálva.[5][6]

    Alternatív elmélet: a MONd[]

    Egyes csillagászok szerint a sötét anyag nem létezik, és a neki tulajdonított jelenségekre a gravitáció nagy távolságokon eltérő viselkedése a válasz. A MOND (Modified Newtonian Dynamics, módosított newtoni dinamika) elmélete szerint a gravitációs erő nagy távolságokon nem a távolság négyzetével, hanem csak a távolsággal arányos fordítottan.[7] [8]

    Az elmélet azonban a kritikusai szerint egyrészt nem tudja megmagyarázni a galaxishalmazok gravitációs hatása révén létrejövő optikai lencsehatást,[9] másrészt nem ad arra magyarázatot, hogy anewtoni gravitáció miért változik meg.

    •  
     

    Nap a Naprendszer központi csillaga. Körülötte kering a Föld, valamint a Naprendszerhez tartozóbolygóktörpebolygókkisbolygóküstökösök, stb.. A Földtől körülbelül 150 millió km távolságra van, amifénysebességgel 8,3 perc. A Nap tartalmazza a Naprendszer anyagának 99,8%-át, átmérője 109 földátmérő. 73,5%-ban hidrogénből áll, amely a központjában zajló magfúzió során héliummá alakul. Az ennek során felszabaduló, majd a világűrbeszétsugárzott energia nélkülözhetetlen a legtöbb földi élőlény számára: fénye a növényekfotoszintézisét, hője pedig az elviselhetőhőmérsékletet biztosítja. Éltető ereje miatt a Nap kiemelkedő kulturális és vallási jelentőséggel is bír.[2] Fénye és hője mellett különböző tudományágak szempontjából kiemelt jelentőséggel bír, mert bizonyos jelenségeket nem tudunk előállítani, csak a Napon megfigyelni. Ezek a tudományágak:plazmafizikamagnetohidrodinamikaatomfizika,részecskefizika.

    A Nap egy G2V színképtípusú csillag, a mintegy 10 milliárd évig tartó fősorozatbeli fejlődésének a felénél jár. A fűtőanyagát jelentő hidrogén elhasználása után, 5 milliárd év múlva vörös óriássá duzzad, majd a külső rétegeiből planetáris köd képződik, magja pedig magába roskadva fehér törpévé alakul.[3]

    Mivel anyagát képlékeny plazma alkotja, a különböző szélességi körön levő területei eltérő sebességgel forognak; az egyenlítői területek 25, míg a sarkvidékek csak 35 naponként fordulnak körbe. Az eltérés miatt erős mágneses zavaroklépnek fel, amelyek napkitörések és – különösen a mágneses pólusok 11 évente bekövetkező felcserélődésének idején megszaporodó – napfoltokkialakulásához vezetnek.[4]

    A Nap asztrológiai és csillagászati jele egy kör, középen ponttal: A Nap csillagászati jele. Ez a jel  ókori egyiptominapisten hieroglif jele is.

    Nap
    Yohkohimage.gif
    Megfigyelési adatok
    Rektaszcenzió Északi pólus: 286,13°
    (19 h 4 min 30 s)
    Deklináció Északi pólus: +63,87°
    (63° 52')
    Távolság 149,6·106 km
    8,3 fényperc, 1 CsE, 1,581·10−5 
    Látszólagos fényesség -26,86m
    Abszolút fényesség 4,8m
    Pályadatok
    Távolság aTejútrendszermagjától ~2,5·1017 km
    (26 000–28 000 fényév)
    (8,5 kiloparszek)
    Galaktikus periódus 2,25–2,50·108 év
    Radiális sebesség 217 km/s a Tejútrendszer középpontjához képest,
    20 km/s a szomszédos csillagokhoz képest
    Fizikai adatok
    Átmérő 1,392·106 * km
    Kerület 4,373·106 ** km
    Lapultság 9·106
    Felszín 6,09·1012 *** km²
    Térfogat 1,41·1018 **** km³
    Tömeg 1,9891·1030 ***** kg
    Sűrűség 1,408 g/cm³
    Felszíni gravitáció 273,95 m/s²
    (27,9 g)
    Szökési sebesség 617,54 km/s
    Hőmérséklet
    Felszín 5780 K
    Korona 5·106 K
    Mag ~13,6·106 K
    Luminozitás 3,827·1026 W
    100 lm/W
    3,9·1028 L
    Forgási adatok
    Tengelyferdeség 7,25°
    (az ekliptika síkjához képest)
    67,23°
    (a Tejútrendszer síkjához képest)
    Forgási periódus 25,3800 nap
    (25 nap 9 h 7 min 13 s) (egyenlítő mentén)
    Forgási sebesség Egyenlítőn: 7174 km/h
    Rendszer
    Csillagösszetevők

    A fotoszféra összetétele[1]
    (az anyagok plazmaállagúak)

    Fizikai és egyéb tulajdonságok[]

    A Nap élete első ciklusában lévő csillag, a G2V színképosztályba tartozik,[5] valamivel nagyobb és forróbb, mint a legtöbb csillag[6]. A G2 jelölés lényegében egy felszíni hőmérsékleti tartományra[5] – az 5800–5900 kelvin körüli felszíni hőmérsékletre – utal, amely egyben meghatározza fehér színét is, továbbá az adott felszí­ni hő­mér­sék­le­té­re ér­zé­keny abszorpciós vo­na­lak in­ten­zi­tá­sa­ira,[5] lényegében arra, hogy a színképében ionizált és semleges fémek színképvonalait lehet felismerni, nagyon gyenge hidrogénvonalak jelenléte mellett. A V jelölés pedig luminozitásának jelölése, amely a Napot afősorozatbeli csillagok közé sorolja:[5] a belsejében zajló folyamatok egyensúlyban vannak, nincs összeomló vagy felfúvódó állapotban.

    Színe érdekes paradoxont rejt, míg a köztudat szerint a Nap sárga színű, a róla érkező fény valójában fehér, akár a fehér szín etalonjának is tekinthető. A jelenségre több magyarázat is született:

    • a légkör fénytörése, amely az ég kék színéért is felelős, változtatja meg a Nap színét;
    • optikai csalódás, amelyet a kék ég kontrasztja miatt látunk;
    • csak olyankor tudunk többé-kevésbé belenézni, amikor alacsonyabban áll az égen és ilyenkor a légkörben lebegő por miatt elszíneződik a fénye a sárgától a narancson át egészen a naplemente vöröséig.
    • ősi „hagyomány” a Napot sárgának tekinteni, mivel őseink a tűzzel azonosították csillagunkat, amelynek lángja sárgás.

    Precíz mérések azonban egyik hipotézist sem támasztják alá.[7]

    A Nap közel tökéletes gömb alakú égitest, amely saját tengelye körül forog, így a hidrosztatikai egyensúlyban levő gömb fizikai megtestesülése. Lapultsága igen kicsi: az egyenlítő mentén csak 10 km-rel szélesebb, mint a sarkokon. A viszonylag lassú tengelyforgás miatt – az átlagos forgási periódusa 28 nap – az egyenlítőn a centrifugális erő 18 milliószor kisebb a felszínen ható gravitációs erőnél, emiatt a centrifugális erő alaktorzító hatása minimális. A bolygók gravitációs ereje sem befolyásolja mérhetően a Nap alakját, mert egyrészt túlságosan is távol vannak a Naptól, - a tömegközéppontok távolsága a nap átmérőjének sokszorosa, így az alakot befolyásoló gravitációs erőkülönbség elhanyagolható - másrészt azok tömege még együtt is elenyésző a Napéhoz képest (a Nap tömege kb. 750-szer nagyobb, mint a gravitációs terében mozgó valamennyi bolygó és más égitest össztömege[8]).
    Csillagunk az egyenlítőjén nézve nyugatról keletre, az északi pólusa felől vizsgálva az óramutató járásával ellentétes irányú tengely körüli forgást végez. Ez a tengely körüli forgás azonban nem hasonlít a Földnél tapasztaltakra, hanem bonyolult rendszert alkot. Különböző módon forognak például az égitest belseje és külső régiói. A sugara kb. 70%-ig lényegében merev testként forog, míg a felette levő régiókban a szélességi körök mentén „szétcsúszik” a forgás, az egyenlítői régiók előbb tesznek meg egy kört, míg a sarki régiók lemaradnak. Az átlagos forgási sebesség 2000 m/s, míg az egyenlítői és sarki régiók sebességkülönbsége ± 100 m/s. A nap forgástengelye 7° 15' szöget zár be az ekliptika síkjával.[9] A Föld Nap körüli keringésének iránya megegyezik a Nap forgásának az irányával, így a Nap tengelyforgása a Földről nézve a valóságosnál lassúbbnak látszik, ezért kétféle forgási periódust szokás megkülönböztetni:

    • szinodikus rotációs periódus, azaz a látszólagos forgási idő: 27,275 földi nap,
    • sziderikus rotációs periódus, azaz a tényleges forgási idő pedig 25,380 nap a Nap egyenlítőtől 16°-ra fekvő területein.

    Csillagunk plazma állapotban levő anyagból áll. Ebben a halmazállapotban az anyagot alkotóatomokról egy vagy több elektron leszakad és így a plazma ionok és szabad elektronok keveréke. A nagyobb sűrűségű régiók anyaga kétkomponensű folyadékként viselkedik, melynek összetevőit (az elektron- és az ion-folyadékot) elektromágneses erők kötik össze. A kisebb sűrűségű külső régiók esetén különösen furcsa jelenségek tapasztalhatók, mivel az egyes részecskék mozgása és a folyadékszerű viselkedés keveredik.[10] A folyadékszerű viselkedés okozta legfontosabb jelenség a R. Carrington[11] által felfedezett differenciális rotáció. A Nap a különböző szélességi körei mentén eltérő sebességgel forog, egyenlítői területei a centrifugális erő hatására gyorsabban forognak, mint a sarki területek. Az egyenlítői területek kb. 25, míg a sarkok környékén fekvők csak kb. 35 naponként fordulnak körbe.
    A Napon megfigyelhető jelenségek szinte mindegyike a differenciális rotációhoz kapcsolható, amely az ezen jelenségeket létrehozó mágneses tevékenység létrejöttének fő mechanizmusa.

    Csillagunk tengely körüli forgása nem stabil, az idők során lassul. A kezdetekor a Nap gyorsabban forgott a saját tengelye körül, majd az impulzusmomentum-megmaradás elve szerint lelassult ésperdülete a bolygókba adódott át.

    A Nap második vagy harmadik generációs csillag, mivel a Naprendszer korábbi – szupernóvakéntelpusztult – csillagok maradványaiból jött létre. Ezt bizonyítja a nehéz elemek (vasaranyurán stb.) jelenléte a Napban, ugyanis ezek az anyagok jellemzően szupernóva-robbanások során, vagy első generációs csillagokban alakulnak ki [12].

    Életciklusa[]

    A Nap életciklusára ma csak elméleti modelljeink vannak, amelyek más csillagok megfigyeléséből, valamint holdkőzetek kormeghatározásaiból származó adatokból épülnek fel. (A Nap keletkezésére vonatkozó korábbi hipotéziseket a tudományos megfigyelések meghaladták, ezekkel a „A Naprendszer keletkezése és története” c. cikk foglalkozik.) Ezek alapján ma a csillagászat tudomány úgy gondolja, hogy csillagunk 4,57 (± 0,11) milliárd évvel ezelőtt keletkezett,[13] és életpályája két fő szakaszt fog bejárni, egy aktív és egy passzív szakaszt. A választóvonal a két szakasz között a magban lejátszódó energiatermelés fennmaradása, vagy leállása lesz.

    Az aktív szakasz

    A Nap élete egy kiterjedt molekulafelhőben kialakuló protocsillagként kezdődött. A Tejútrendszerbenszámos gigantikus molekulafelhő fordult elő és fordul elő a mai napig, amelyek ún. csillagbölcsők is egyben. Egy-egy nagyobb külső behatásra (pl. a galaxisunk spirálkarjait alkotó lökéshullám-frontokon való áthaladáskor, vagy közeli szupernóva robbanások hatására), a felhőkben levő viszonylag sűrű anyagban inhomogenitások, anyagcsomók jöttek létre, és az ilyen anyagcsomókban összeomló gáz- és poranyag elkezdett még inkább összecsomósodni. Az egy pont felé zuhanó, sűrűsödő anyag melegedni kezdett, a gravitációs összehúzódás során egyre több hő szabadult fel, extrém módon felmelegítve az anyagot. Egy ilyen egyre jobban összezsugorodó anyagcsomóból, ún. globulából kb. 500 000 év alatt jött létre a proto-Nap. Ez a protocsillag még vörösen fénylett, ám középpontjában elérte a hőmérséklet a néhány millió fokot és elkezdődött benne a hidrogénfúzió. Ehhez a folyamathoz mindössze néhány millió év kellett.[14][15]

    A proto-Nap megszületése után még tovább zsugorodott és melegedett, ám csak további pár ezer év kellett, hogy létrejöjjön a gáznyomás és a gravitáció egyensúlya. Amikor ez az egyensúly stabilizálódott, a Nap belépett az ún. fősorozati állapotba. Ez csillagunk köznapi értelemben vett működésének szakasza: a magban a hidrogén héliummá alakul át. Élete során a Nap mintegy 10 milliárd évig számít fősorozatbeli csillagnak, és ebből 5 milliárd év már eltelt.[14]

    Várhatóan 4–5 milliárd év múlva vörös óriássá duzzad: az üzemanyagként szolgáló hidrogén mennyiségének csökkenése miatt megbomlik a gáznyomás és a gravitáció évmilliárdos egyensúlya, a nyomás lecsökken, a Nap teste elkezd összehúzódni. Amikor az összehúzódás során felszabaduló gravitációs energia miatt a hőmérséklet tovább emelkedik a magban és elegendő lesz a hélium„égetéséhez” (további, szenet eredményező fúziójához), a más típusú fúzió még több energiát szabadít fel a magban – nagyjából 100 milliárd fokra hevíti a magot – és a nyomás ismét megnövekszik, a felszabaduló energia felfújja a Napot. A Nap külső határa különböző modellek szerint ekkorra a Föld jelenlegi pályáján túl fog kinyúlni. A Nap vörös óriássá válik, mivel felszíne jóval nagyobb lesz, így a magban termelődő energia sokkal nagyobb felületen oszlik szét, kevésbé melegítve fel ezt a nagyobb felszínt, ami miatt a fénye gyengébb, „vörösesebb” lesz. Ez a fázis a fősorozati léthez képest nagyjából egy nagyságrenddel kevesebb ideig, 1 milliárd évig tart majd.[16]

    A Nap a vörös óriás fázisban el fogja veszíteni anyagának nagy részét (és így – a gyengülő gravitációmiatt – addigra a Föld már egy távolabbi pályán fog keringeni, elkerülve a megsemmisülést.[17]) Csillagunk héliumégető fúziója nem lesz olyan stabil folyamat, mint a fősorozati energiatermelésé volt, így ezek az instabilitások felfúvódások és összehúzódások sorozatát váltják ki (amilyeneket a csillagászat az ún. változócsillagokon figyel meg napjainkban is), amelyekben a Nap gázanyagának külső héjai leválnak, ezzel okozva az említett tömegvesztést.[16]

    A passzív szakasz

    Miután a Nap az összes üzemanyagát eltüzelte, leáll a fúzió, a gáznyomás megszűnik, teret engedve az egyedül fennmaradó gravitációs erőnek és csillagunk belseje összeroskad, és fehér törpévé válik. Eközben a pulzálások során korábban leszakadt külső rétegeiből planetáris köd képződik, amely lassan tágul és végül elenyészik. Az összeroskadó mag egy rendkívül kompakt égitestként, voltaképpeni fehér törpeként marad fenn: a fennmaradó, nagyjából 0,6 naptömegnyi anyag egy Földméretű gömbben sűrűsödik össze. A mag összeroskadása ismét energiát termel, ám az nem elegendő a szén további, még nehezebb anyagokat létrehozó fúziójához, így minden további energiatermelésnek vége szakad, a Nap csak a maradék energiáját sugározza ki. Ez a hősugárzó fázis ismét milliárd-tízmilliárd év hosszú folyamat lehet (az Univerzum jelenlegi, kb. 13,7 milliárd éves koránál fogva lényegében még nincs olyan fehér törpe, amely ennek a fázisnak végére érhetett volna).[18]

    Legvégül az összes energia kisugárzását, az égitest lehűlését követően a Napból egy fekete törpeválik majd. Ez egy kihűlt, passzív „csillagtetem”, amely mindössze gravitációs hatást gyakorol majd a környezetére. A jelenlegi kozmológiai modellek szerint ez az égitest akár végtelen hosszú élettartamot is megérhet, hiszen az Univerzum legvégsőbb koráig is fennmaradhat, amely kor mai ismereteink szerint végtelen. Ezt a fennmaradást egyedül egy kozmikus karambol, valamely csillagnak, vagy fekete lyuknak ütközés akadályozhatja meg (igaz, ez bekövetkezhet a csillagfejlődés korábbi fázisaiban is).[18]

    Mi nem lesz a Napból?

    A Nap nem lesz vörös törpe, hisz a csillagkeletkezéskor több anyagot kebelezett be.

    A mi Napunk nem fog szupernóvává alakulni, mert a tömege alatta marad az ehhez szükségesChandrasekhar-határnak. Ebből következően sem neutroncsillag, sem fekete lyuk nem válhat a Napból.

    A napciklus[]

    A Nap aktivitása kb. 11,2 éves periódust mutat, azaz ennyi idő telik el két napfoltmaximum között. A napciklus elején a napfoltok a 30–45°-os szélességen jelennek meg, később az egyenlítő felé egyre közelebb. Új napfoltciklus során a vezető és követő napfoltok polaritása felcserélődik. A napfoltciklus felfedezése H. Schwabe csillagász nevéhez fűződik.

    A Napot megfelelő szűrőkön keresztül megfigyelve láthatóvá válnak a napfoltok. Feltűnően sötét színüket az okozza, hogy hűvösebbek – bár csak 1-2 ezer fokkal – az őket körülvevő anyagnál, mert a körülöttük levő igen erős mágneses tér megakadályozza a hőátadást. A napfoltok belső részén sötétebb terület (umbra) található, ezt övezi a világosabb zóna, a penumbra. Átmérőjük a több tízezer kilométert is elérheti, gyakran kiindulópontjai intenzív flereknek és a koronában látható hatalmas napkitöréseknek.

    A megfigyelhető napfoltok száma nem állandó; a tizenegy évig tartó napciklus során változik az intenzitásuk. A napciklus minimumán csak néhány látható, de időnként megesik, hogy egy sem. Később az egyenlítő két oldalán szimmetrikusan, magas szélességi körökön jelennek meg, és az egyenlítő felé vándorolnak, miközben újabbak alakulnak ki. A két féltekén található napfoltok általában párokban jelennek meg, és környezetükben ellentétes előjelű a mágneses töltés. A napciklus végén, az északi és déli mágneses pólusok felcserélődésekor látható a legtöbb napfolt.

    A mágneses pólusok legutóbbi felcserélődése 2001 nyarán volt, amit az egy teljes napcikluson át működő Ulysses űrszonda is megfigyelt. Sikerült megállapítani továbbá, hogy a Nap déli mágneses pólusa instabil; valójában több pólus létezik, egy nagyobb területen szétszórva.

    A napfolttevékenység erőssége szintén szabálytalanul változó intenzitást mutat; az 1600-as éveksorán például a ciklusoktól függetlenül is rendkívül kevés napfoltot figyeltek meg, egyes feltételezések szerint részben ez okozta az akkori hűvösebb időjárást.

    A napciklus jelentősége a Föld szempontjából abban mutatkozik meg, hogy a Földet elérő zavaró és káros hatások milyen mértékűek lesznek. Ezek a napciklus elején minimálisak, a ciklus közepe táján erősebbek.

    Bár a Nap 24. napciklusa hivatalosan 2008. január 4-én megkezdődött (ekkor észlelte a SOHO űrszonda az első napfoltot), a 2008-as és 2009-es év az elmúlt 50 év egyik leghosszabb napfoltmentes időszakának számít. A következő napfoltmaximum 2013-ban várható.[19]

    Belső felépítése[]

    szilárd felszín hiánya miatt nem lehet pontosan meghatározni, hogy hol húzódik a Nap határa: a középpontjától kifelé haladva folyamatosan csökken a sűrűsége. A Nap sugarát a középponttól a fotoszféráig mérik, mert ez a legkülső olyan réteg, ami még elég sűrű ahhoz, hogy ne legyen átlátszó. A Nap anyagának többsége a központból mérve a sugarának 70%-án belül található és bár ezeket a belső területeket nem lehet közvetlenül megfigyelni (ugyanis a Nap anyaga nem enged át semmilyenelektromágneses sugárzást), fizikai modellekkel és az égitest rezgéseit vizsgáló helioszeizmológia módszerével mégis pontos képet alkothatunk a belső szerkezetéről, rétegeiről.[20]

    A Nap szerkezetének főbb rétegei

    Tisztán elméleti úton (fizikai modelleken keresztül) is fontos információkhoz lehet jutni a Nap belsejében uralkodó viszonyokkal kapcsolatban, olyan adatokból kiindulva, mint a tömege, átmérője, fényessége stb. Egy, a Naphoz hasonló gázgömbnek a felépítését három erő határozza meg; a gáznyomás, a sugárzási vagy fénynyomás és a gravitáció.
    A gáznyomás és a fénynyomás önmagukban a Nap felfúvódását, szétszóródását okoznák. A fénynyomás a fénykvantumokabszorpciójakor jön létre, azonban a Nap esetében ez az erő a gáznyomáshoz képest csekély, csak az óriáscsillagok esetében van nagy jelentősége. A gravitáció az előbbi két erővel ellentétes hatású, de önmagában azt eredményezné, hogy az egymáson elhelyezkedő gázrétegek saját súlyuk alatt összeroskadnának, a Nap önmagába omlana.
    Mivel egyik szélsőséges eset sem következik be, nyilvánvaló, hogy a három erő mechanikai egyensúlyban van; a Nap belsejének minden pontjában a gáznyomás és a fénynyomás erejének összege megegyezik a gravitációéval. Továbbá sugárzási egyensúly is jelen van; a belső rétegekben termelődött sugárzásnak el kell hagynia a Napot, a felszínből a központ felé haladva pedig folyamatosan nő a felsőbb gázrétegek vastagsága és ezzel együtt a tömege, az egyensúlyi állapot miatt viszont a gáznyomásnak is növekednie kell. Ezen alapelvek segítségével a Nap belsejében uralkodó állapotokat jellemző adatok kiszámíthatóak. Az ezt az egyensúlyt, annak összetevőit, hatásmechanizmusát és matematikai leírását Standard Napmodell néven említi az asztrofizika.[21]

    Az elméleti számítások mellett a gyakorlati megfigyelések is nélkülözhetetlenek, segítségükkel több, részletesebb és pontosabb adatot lehet megtudni. Ahogyan a földrengések természetébőlszeizmológiai módszerekkel lehet következtetni a Föld belsejében zajló folyamatokra, úgy ehhez hasonlóan a napszeizmológia (helioszeizmológia) a Nap felszínén tapasztalható jelenségek tanulmányozásával következtet a mélyebb rétegek szerkezetére. Fontos szerephez jutnak ebben a munkában a napkutató űrszondák.

    A Nap fő energiaforrása a proton-proton ciklus, mely során négy protonból lesz egy hélium(4He)

    A mag[]

    A mag a sugár 20%-án belül eső teret jelenti, és ez a Nap egyetlen olyan része, amelyet közvetlenül a magfúzió fűt, a többi réteg az innen kiáramló energiának köszönheti hőmérsékletét. A magban keletkezett összes sugárzás áthalad a felette levő rétegeken, mielőtt elérné a fotoszférát és kijutna a világűrbe.
    A Nap középpontjában a sűrűség eléri a 1,5·105kg/m³, a hőmérséklet pedig a 15·106 (15 millió) kelvin értéket. Hogy jobban érzékelhető legyen: a csillagunk központjában levő gáz (plazma) 150-szer sűrűbb a víznél és kb. fél liternyi Nap anyag tömege annyi, mint egy átlagos emberé [22]. A rendkívül magas hőmérséklet és nagy sűrűség hatására termonukleáris reakció (magfúzió) jön létre, melynek során minden négy hidrogénatom egyesüléséből egy héliumatom keletkezik, miközben energia szabadul fel. Másodpercenként átlagosan 8,9·1037hidrogénatom (600 millió tonna hidrogén) egyesül, ami 383·1024 watt energia keletkezésével jár.[23]

    A magban zajló láncreakció intenzitásának állandóságát önszabályozó mechanizmusok segítik; a reakció továbbterjedése az egyesülő atommagok nagyobb aránya miatt a mag felhevüléséhez, és a megnagyobbodásához vezetne, de a felsőbb rétegekben található nagy mennyiségű semleges anyag beáramlása csökkenti a fuzionáló atomok arányát, lecsillapítva ezzel a reakciót, ami idővel visszaáll a normális szintre.

    A nagy energiájú fotonok (gamma- és röntgensugárzás) számára hosszú időt vesz igénybe ez az út; a mag anyaga elnyeli és – alacsonyabb energiával – újra kisugározza őket. A fotonok utazási idejére vonatkozóan a számítások igen eltérő eredményeket adnak; 17 ezer – 50 millió év között. Miután sikerül a magból kijutniuk és a konvekciós rétegen is áthaladtak, a fotonok látható fény formájában távoznak; minden egyes gamma részecske több millió látható fény fotonra bomlik a Napból történő kilépése előtt.

    neutrínók szintén a magfúzió során keletkeznek, de nagy áthatoló képességüknek köszönhetően ritkán lépnek kapcsolatba a környező anyaggal, ezért szinte azonnal távoznak a Napból. A neutrínók kísérleti kimutatása szolgáltatta a végső bizonyítékot a Nap magjában zajló magfúziós elmélet valós voltára. Az évekig tartó mérések során viszont elméletileg várható neutrínómennyiség harmadát sikerült csak kimutatni, és csak a közelmúltban született meg a neutrínóoszcilláció jelenségének felfedezése, amely megmagyarázta a neutrínóhiányt. (Lásd: A napneutrínók rejtélye).

    Termonukleáris reakció[]

    A Nap energiájának forrását az 1930-as években értették meg, amikor Hans BetheGeorge Gamowés Carl von Weizsäcker azonosították a lényeges nukleáris reakciókat.

    Az energiatermelés termonukleáris reakciók révén folyik, amelyekben hidrogén alakul át héliummá. A termelődő energia 98,5%-át az úgynevezett „p-p lánc”, a fennmaradó 1,5%-ot pedig a CNO-ciklus adja (CNO = szén-nitrogén-oxigén). Ezen reakciók során a tömeg 0,7%-a sugárzássá alakul (amit Albert Einstein E = mc² energia-ekvivalencia egyenlete ír le).

    A fő energiatermelő folyamatként azonosított p-p lánc lefolyása két hidrogén-atommag (proton) egyesülésével kezdődik (erre az egyesülésre átlagosan 5 milliárd évet kell várniuk az atommagoknak), így deutérium (nehézhidrogén) képződik. Melléktermékként egy pozitron és egy neutrínó keletkezik. A pozitron azonnal összeütközik egy elektronnal, és energiává (fotonná) alakul. Ezután csak 1,4 másodpercet kell várni, hogy a deutérium egy újabb protonnal egyesüljön és hélium-3 (³He) jöjjön létre. Ezután átlagosan 240 000 év telik el, míg két hélium-3 egyesül, létrehozva a folyamat végtermékét, a hélium atomot (4He), valamint felszabadítva két hidrogénatomot (protont). A folyamatnak létezik egy másik ága, amelyben láncreakciók során berillium (7Be) és lítium (7Li) is részt vesz végül természetesen ebből is hélium (4He) keletkezik.[22]

    A folyamat matematikai leírása:

    p + p → ²H + e+ + \nue
    ²H + p → ³He + \gamma
    ³He + ³He → 4He + p + p

    vagy

    ³He + 4He → 7Be + \gamma
    7Be + e- → 7Li + \nu  e
    7Li + p → 8Be + \gamma  → 4He + 4He

    Francis William Aston muatta ki 1920-ban, hogy megmérve 4 hidrogénatom és 1 héliumatom tömegét, a kettő között nem áll fenn egyenlőség (a hidrogénatomok valamivel nehezebbek),[24] a kettő közti különbség, nagyjából 0,7%, az a tömeg, amely energiává, fotonokká alakul át. Jelenleg a Napban másodpercenként 600 millió tonna hidrogén lép reakcióba és 596 millió tonna hélium keletkezik, a különbözetet jelentő 4 millió tonna anyagból teljes egészében energia lesz.[22]

    A Nap teljes élettartama a rendelkezésre álló tömeg és a fényesség alapján a következőképpen becsülhető:

    t0 ≈ 0,1 × 0,007 m0c² / L0 ≈ 1010 év (10 milliárd év), ahol azt feltételezzük, hogy a Nap tömegének 0,1 része vesz részt a fenti reakciókban, mivel csak a legbelsőbb magban van elegendően magas hőmérséklet a reakció fenntartásához.

    A fúzió jelenlegi paramétereivel számolva a Nap 10 milliárd éves várható életkorának felénél járunk, mivel nagyjából még 5 milliárd évre elegendő a hidrogénkészlet a fúziós reakció táplálására.[22]

    A sugárzási zóna[]

    Körülbelül a sugár 20–70%-a közötti gömbhéjban helyezkedik el a sugárzási zóna. Ez a régió az energiaáramlás módjáról kapta a nevét: ebben a rétegben az anyag még elég sűrű és forró ahhoz, hogy a magban keletkezett energia sugárzás, nem pedig hőáramlás formájában haladjon át rajta (ezt az ionizált formában jelenlévő hidrogén teszi lehetővé). A hőmérséklet a magtól kifelé haladva folyamatosan csökken, de még így is rendkívül magas, az alsó „zónahatáron” 7 000 000 K, míg a felsőn 2 000 000 K. A hőmérséklet-csökkenés rátája alacsonyabb, mint a magasság növekedésével arányos hőcserementes hőmérséklet-csökkenés rátája, ezért nincsenek konvekciók az anyagban. Az anyag sűrűsége a hőmérséklethez hasonlóan csökkenő karakterisztikát mutat, csak sokkal erőteljesebb mértékben. A sűrűség 20 g/cm³-ről (hozzávetőleg az arannyal megegyező értékről) 0,2 g/cm³ értékre ( a víz sűrűségének ötödére) csökken, azaz a hőmérséklet harmadnyira csökkenésével szemben 100-szoros a csökkenés rátája.[25]

    A sugárzási zóna egyik érdekes tulajdonsága, hogy „feltartja” a fotonokat. A magban keletkező energia fotonok és neutrinók formájában megy végbe, amelyek kifelé indulnak a magból, át a napbelső többi részén, majd szabadon tovább az univerzumba. A nagy áthatoló képességű neutrínók gyakorlatilag szinte akadály nélkül jutnak ki a Napból, ám a fotonok a sűrű sugárzási zónában sorozatos ütközéseken mennek keresztül. Az egy foton által megtehető ún. közepes szabad úthossz, mindössze 2 cm (azaz 2 cm-nyi mozgás után a foton beleütközik egy másik atomba, vagy ionba), amely után a foton visszapattan, szóródik. A foton ide-oda pattogása nyomán átlagosan kb. 1 millió év telik el, mire végül az általa hordozott energia kijut a Napból.[26][27]

    Tachoklína[]

    A helioszeizmológia legfrissebb felfedezése, egy vékony átmeneti réteg a sugárzási és a konvektív zóna között. Ez a réteg jelenti az átmenetet a merev testként forgó belső régiók és a differenciális rotáció jellemezte külső tartományok között. A korábbi feltételezések úgy tartották, hogy a differenciális rotáció átmenete a merev forgásba egy széles tartományt érintő folyamat, ám a legújabbhelioszeizmológiai mérések egy meglepően vékony, a Nap sugarának mintegy 4%-át kitevő gömbhéjat mutattak, amelyben mindez végbemegy. Ráadásul az új mérési eredmények arra is rámutattak, hogy valószínűleg ez a réteg a napdinamó, azaz a Nap mágneses mezejének forrása, mivel itt fordulnak elő a különböző rétegek közötti legnagyobb sebességkülönbségek.[28][29]
    Mivel a napbelső övekre osztását az energiatranszport módja alapján szokták meghatározni, a tachoklínát szokás a sugárzási zóna részének is tekinteni, mivel az energiaáramlás itt is még sugárzás formájában történik.

    A konvekciós zóna[]

    A Rayleigh-Bérnard hatás mechanizmusa

    A konvekciós zóna a napbelső legkülsőbb tartománya, értelmezéstől függően a sugár 70%-ától kifelé elterülő, a felszín alatti mintegy 200 000 km vastag gömbhéjat jelenti. Ez a réteg már nem elég sűrű és forró ahhoz, hogy az energia sugárzás formájában haladjon át rajta, mivel az alsóbb rétegektől eltérően itt már nem elég magas a hőmérséklet az anyag ionozáltan tartásához, a gázok csak részlegesen ionizáltak, amelyek így elnyelik a sugárzás egy részét. Az energia hővezérelt anyagáramlások, konvekciók formájában terjed tovább a napfelszín felé.
    A konvekciók a folyadékoknál megfigyelt Rayleigh-Bérnard hatás révén jönnek létre úgy, hogy a gázok legkülső rétegét a hőmérsékleti szempontból homogénnek tekinthető alsóbb rétegek folyamatosan fűtik, míg a réteg külső határán hűtő hatás érvényesül. Emellett az anyagban hőmérséklet-különbségek jönnek létre a hő elnyelődésének kisebb különbözőségeiből. Egyes tartományok jobban felmelegszenek, mások kevésbé, így a melegebb részek sűrűsége a környezeténél kisebb lesz, ezért ez a hígabb, melegebb anyag felfelé kezd emelkedni, konvektív cellákat (feltörekvő anyagáramlatokat) alkotva. Az anyag egészen a felszínig emelkedik, a bennük levő energia szétsugárzódik, míg maga az anyag lehűl, átadva a helyét az újabb, feltörekvő hőoszlopnak, míg maga a kihűlt anyag az áramlat szélén lefelé süllyed. A gáz ilyen módon való fel-le „liftezése” a konvekció, míg maguk a belül forró, kívül hideg „buborékok” okozzák a fotoszféra granulációját (lásd lejjebb).[29][30]

    Differenciális rotáció[]

    A konvekciós zóna fő sajátossága, hogy a benne levő anyag a csökkenő sűrűség miatt elveszti szilárdtestkénti viselkedését és a Nap tengely körüli forgása ebben a gömbhéjban átmegydifferenciális rotációba. Ez a forgás kétféle differenciálódását is jelenti, egyrészt hogy csillagunk egyenlítői és sarki régiói eltérő sebességgel tesznek meg egy-egy fordulatot (ez az ún. szélességi differenciális rotáció), másrészt azt, hogy a felszín anyaga és a mélyebben levő anyag is eltérő sebességgel tesznek meg egy fordulatot (ez pedig az ún. mélységi differenciális rotáció).[31]

    Meridionális cirkuláció[]

    A nagy szállítószalag mozgása a Nap felszínén

    A meridionális cirkuláció, vagy népszerű nevén a „nagy szállítószalag” egy hatalmas, forró plazmaáramlás a Nap felszínén. A plazma cirkulációja az egyenlítőre merőleges síkban, azaz a meridiánsíkban jön létre, összekeverve az egyenlítői és a sarki régiók anyagát (hasonlóan a Föld Golf-áramlatához, csak attól természetesen teljesen más mechanizmusok hatására). A Nap felszínén a meridionális áramlás igen gyenge (összehasonlítva a differenciális rotáció nagyságával csak kb. 20 m/s). Irányát tekintve a felszínen az egyenlítőtől a pólus felé tartó áramlás a Nap belsejében visszafordul, mélysége eléri a 200 000 km-t és ott egy a pólustól az egyenlítő felé tartó áramlás alakul ki. A Nap belsejében, ahol a sűrűség jóval nagyobb, az áramlás már lassabb, kb. 1–2 m/s körüli érték. Az áramlásrendszernek két ága van, egy északon és egy délen. Sebességét 1996 óta mérik a SOHO műhold segítségével, mindegyik mintegy 40 év alatt tesz meg egy kört. A kutatók szerint a szalag mozgása befolyásolja a napfoltciklust, illetve a napfoltok megjelenését. 2000 és 2010 között a sebessége megnőtt, a kutatók ezt összefüggésbe hozzák az ugyanebben az időszakban tapasztalható eddigi legnagyobb napfolt-minimummal.[9] [32]

    Atmoszféra[]

    Mágneses ívkisülés extrém ultraibolya fényben 2010. július 6–8-án

    Mivel a Nap egy ionizált gázgömb (plazmagömb), nincs éles felszíne, a rendkívül nagy sűrűségű mag és a végtelenül ritka napkorona között folyamatos a sűrűségbeli átmenet. A napfelszín és a légkör határának mégis létezik egy fizikailag jól definiálható meghatározása, értelmezése: a Nap „felszínének” egyezményesen azt a felületet tekintjük, ahonnan egy 500 nm hullámhosszú (ez kb. a látható színtartomány közepének felel meg) foton függőlegesen felfelé mozogva 1/e\simeq 0,37 valószínűséggel még elnyelés nélkül kijut a Nap anyagából [33]. Ez a meghatározás összecseng azzal az értelmezéssel, amely szerint a légkör és a felszín közötti határt az „átlátszóság” jelenti. A látható fény tartományában átlátszatlan gömbhéj még a Nap testének része, az efölötti rétegek alkotják a Nap légkörét(atmoszféráját).
    A légkör megfelelő eszközökkel a teljes elektromágneses spektrumban közvetlenül is tanulmányozható; a látható fény mellett rádiósugarakat is kibocsát. Sűrűsége jóval kisebb, mint a mélyebben található rétegeké, hőmérséklete viszont rendkívüli szélsőségeket mutat.

    A Nap atmoszféráját három fő rétegre osztjuk: a fotoszférára, a kromoszférára és a koronára. Olykor a koronától elválasztják még a korona és a kromoszféra között átmenetet képező ún. átmeneti tartományt.

    Fotoszféra[]

    A granulák méreteinek érzékeltetése (a kis ábra Észak-Amerika)

    fotoszféra (göröga fény gömbje) a Nap látható felszíne, a naplégkör legalsó rétege, ahonnan a Nap látható fényének túlnyomó része – több mint 90%-a [34] – származik. Lényegében a csillagunkban termelődött energia ebben a rétegben sugárzódik szét fény formájában. Ez a réteg egy rendkívül vékony (a napbelső és -légkör messze legvékonyabb egysége), mindössze néhány száz kilométer vastag réteg,[35]alsó határa a Nap fentebb – a Kromoszféra fejezetben –definiált felszíne, felső határa a naplégkör azon szintje, ahol a hőmérséklet minimális. Más megközelítésben ez a Nap, mint gázgömb első olyan rétege, amely átlátszó azelektromágneses spektrum látható fény tartományában.

    A Nap sugarának kevesebb mint egy ezrelékét kitevő vékonyságának köszönhetően a napkorongot éles pereműnek látjuk. A fölötte elhelyezkedő rétegek már annyira ritkák, hogy a Nap látható összsugárzásához nem járulnak számottevően hozzá. A fotoszféra átlátszósága a levegőéhez hasonló, bár kissé kisebb annál. Az átlátszósághoz kapcsolódó optikai jelenség a „peremsötétedés” vagy „szélsötétedés”: a Nap (és más csillagokóriásbolygók) pereme kevésbé fényes, mint a közepe. A napkorong közepén a merőleges rálátás miatt mélyebb, ezáltal melegebb, fényesebb rétegekbe látunk le, míg a szélén a lapos szögű rálátás csak kevésbé mély, ezáltal kevésbé meleg és fényes rétegekig hatol le. Az átlátszóság, így a benne megjelenő jelenségek miatt ez a Napnak az a része, amely szabad szemmel, illetve távcsővel (biztonsági okokból speciális fényszűrő alkalmazásával), megfigyelhető, így ez jelenti a Napmegfigyelés fő területét.

    A fotoszféra alsó határától a felsőig a hőmérséklet 6500 kelvinről 4400 kelvinre, a sűrűség 10^{-6} g/cm^3-ről 10^{-8} g/cm^3-re, a nyomás 10^4 pascalról 600 pascalra csökken. (A sűrűség még a fotoszféra alján sem éri el a levegő sűrűségének egy ezrelékét.) A kilépő sugárzás összességében ugyanannyi energiát szállít, mintha egyetlen, 5785 K hőmérsékletű felületről származna, ezért ezt tekintjük a Napeffektív hőmérsékletének.[36] A színképelemzések során kiderült, hogy ebben az alacsony hőmérsékletű rétegben olyan bonyolultabb molekulák is jelen vannak, mint a szén-monoxid vagy a víz.[37]

    A fotoszféra megfigyelései számos, főként a mágneses mezőhöz köthető jelenséget azonosítottak. Ilyenek a napfoltok, a granuláció, a napkitörések.

    Granuláció, szupergranuláció[]

     
    A granuláció hatásmechanizmusának bemutatása a Rayleigh-Bérnard hatás felhasználásával

    Bár a szabadszemes megfigyelők számára a Nap homogénnek látszik, csillagunk felszínének jellegzetes szemcsés megjelenése van, amelyet – megfelelő biztonsági rendszabályok betartása mellett – már kis távcsöveken keresztül is megpillanthatunk. A Nap felszíne lényegében úgy néz ki, mint egy fazék forrásban levő víz. A fotoszféra jellegzetes szemcsés szerkezetét, a granulációt a konvekciós zónából hőoszlopok formájában feltörő, majd lehűlve visszaáramló gáz hozza létre. Egy ilyen granula, azaz szemcse tipikusan 500 km átmérőjű. A granulák jellemzően kerek vagy sokszög alakúak, bennük a feláramlás sebessége 5–7 km/s, közöttük pedig a lehűlt, süllyedőben levő gáz található. Átlagos élettartamuk 10–20 perc, folyamatosan változtatják az alakjukat keverednek más granulák anyagával.[34] Ezek a felszíni alakzatok a Földről – tudományos igényű vizsgálatok számára – nehezen figyelhetők meg a légkör zavaró hatása miatt, alapos tanulmányozásukra csak az űrkorszakban nyílt lehetőség, majd a 21. század távcsőfejlesztései, a számítógépvezérelt adaptív optikák fejlődése teremtette meg a lehetőséget a földi megfigyelésekre is.

    A granulák képesek óriási szerkezeteket is alkotni, ezek a szupergranulák. A szupergranuláció több száz granulákból létrejött, akár 100 000 km átmérőjű ugyancsak rövidebb életű rendszer, 1–2 napos élettartammal. Ez azonban nem figyelhető meg optikai úton, a szupergranulákat a vízszintes sebességeloszlás mérésével lehet kimutatni. A szupergranulákban a plazma áramlási sebessége 0,5 km/s körüli.[34]

    Napfoltok, napfáklyák[]

    A napfelszín talán legrégebben felfedezett jelensége a napfolt-tevékenység. A csillagászattörténetfőként az európai kultúrkör történeti emlékeire támaszkodik, így kevéssé ismert tény, hogy az i. e. 4. században történt az első napfolt-megfigyelés, kínai csillagászok által. Gan De és két társa, Si Sen és Vu Csian írták le először a napkorongon látható sötét foltokról. Kétszáz évvel később pedig már a napfoltok formájáról is születtek leírások [38]. A megfigyelésekkel kapcsolatos feljegyzések sajnos nagyrészt elvesztek, így az első tudományos értékű – jól dokumentált – megfigyelések valóban Galilei első távcsöves eredményei lettek. A távcső csillagászati alkalmazása a jelenség részletes megismerését is lehetővé tette.

    napfoltok a fotoszférában található, a környezetüknél 1–2 ezer kelvinnel alacsonyabb hőmérsékletű – jellemzően 4000 K hőmérsékletű –, sötét területek. A napfoltok általában csoportokban jelentkeznek, melyek ellentétes mágneses polaritású vezető és követő részekre oszthatók, polaritásuk a Nap északi és déli féltekéjén ellentétes. Egy különálló napfolt mérete jellemzően a Földdel összemérhető nagyságú. Két jól megkülönböztethető részük van: a belső, sötétebb terület, azumbra és az ezt övező a világosabb, szálas szerkezetű zóna, a penumbra. Azonban a napfoltok nemcsak optikai jelenségként értelmezhetők, hanem „kézzelfogható” objektumok, a napfelszín „gödrei” is egyben. Az ún. Wilson–effektus elmélete szerint a lehűlt gáz összezsugorodik, ezért közelebb kerül a Nap belsejéhez, azaz a hidegebb napfolt a felszínen mélyedésként jelenik meg.[39] A napfoltok élettartama általában néhány nap, de a nagyon nagy példányok élettartama több hét is lehet. Alakjuk legtöbbször közelítőleg kör, ám változatos skálán változik, ovális, vagy csepp alakú foltok is bőven akadnak.[40]
    A jelenség magyarázata a mágneses mező és az energiaszállítási rendszer kölcsönhatásábólvezethető le: a napfoltoknál a felszínt áttörő mágneses erővonal-kötegek a hőt szállító áramlások ellen hatnak a konvektív zónában és akadályozzák az energia szállítását a felszínre. Ennek eredményeképpen alakulnak ki az alacsonyabb hőmérsékletű foltok, amelyek kevesebb fényt bocsátanak ki.[40]

    A napfolttevékenység hosszútávú megfigyelése ciklikusságot mutatott ki a napfoltok számának alakulásában. Átlagosan 11 év alatt zaljik le az a folyamat, amelyben először erőteljesen megnövekszik, majd ugyanilyen erőteljesen lecsökken a napfoltok előfordulása. A ciklus során nemcsak a foltok száma, hanem elhelyezkedése is változik. A napciklus kezdetén a foltok a 35–45°-os heliografikus szélességeken jelennek meg (általában a 45° szélességnél magasabban nem fordul elő napfolt). A napciklus előrehaladtával a felbukkanó új foltok az egyenlítőhöz egyre közelebb tünnek fel. Ha a foltok vándorlását egy diagramon ábrázoljuk, egy jellegzetes mintázatot, az ún.pillangódiagramot kapunk.[41]
    A 11 éves ciklus összefügg a Nap ugyanilyen időközönként bekövetkező mágneses pólusváltásával, ám ennek mechanizmusát még nem ismerjük pontosan. Az egyes ciklusokban nem egyforma a napfolt aktivitás változása, vannak olyan ciklusok (vagy ciklus-sorozatok), amelyekben mégsem növekszik meg a napfoltok száma drasztikusan. Ilyen gyengébb ciklust figyeltek meg 1650 és 1710között, az ún. Maunder–minimum idején. Ebben az időszakban a Földön egy átmeneti globális lehűlés volt megfigyelhető, az ún. „kis jégkorszak”, amelyet kutatók szoros összefüggésbe hoznak a nap aktivitásának csökkenésével. Bár a tudomány akkori fejlettségi szintje (főként a mérési adatok hiánya) nem teszi lehetővé a pontos modellezést, kutatók úgy hiszik, hogy a Nap energiakibocsátása csökkent – ennek látható jele volt a napfoltok számának csökkenése –, amely befolyásolta a felsőlégköri ózon képződését, ezzel felborítva a légkörzés tartós folyamatait, megváltoztatva azéghajlati tényezőket.[42]

    napfáklyák a fotoszféra felső tartományában lévő, a környezetüknél 300 fokkal magasabb hőmérsékletű felhők, amelyekből a napfoltok környékén világosabb gyöngyszerűen összefűzött szerkezetek alakulnak ki. Ezen szerkezeteket nevezzük fáklyamezőnek, ennek elemeit fáklyáknak.[43]

    Flerek[]

    Egy napfler képe a japán Hinode műhold felvételén

    fler a naplégkör egy korlátozott részének hirtelen (percek alatti) erős kifényesedése aröntgentartományban és esetleg más hullámhosszokon, amit lassú (mintegy fél óra-óra alatti) elhalványulás követ. (A fler kifejezés az angol flare – kifényesedés, erős fény – magyarosan átirata.) A flert gyakran szokták a napkitörés szinonimájaként használni, utóbbiak azonban inkább a napkorona eruptív jelenségei, míg a flerek a fotoszféra mágneses eredetű kifényesedései. A legtöbb fler a mágneses tartományban figyelhető meg, ám a legnagyobbak hullámhossza a fény tartományaiban nyúlik át, elsősorban a hidrogén H_\alpha-vonalának hullámhosszára (ezek az ún. H_\alpha-flerek), ám a kivételesen nagyok bármiféle speciális szűrő nélkül a teljes látható spektrumban érzékelhetőek.[41]

    A flerjelenség oka a mágneses energia hirtelen felszabadulása a mágneses átkötődésnek nevezett folyamatban. Az átkötődés során a mágneses tér szerkezete leegyszerűsödik, energiája lecsökken. A felszabaduló energia a plazmában jelenlevő töltött részecskék (elektronok, protonok, atommagok) mozgási energiájává alakul, így az átkötődési pontból két átellenes részecskenyaláb indul ki.

    Kromoszféra[]

    A Nap légkörének a fotoszféra fölötti rétege a kromoszféra. Nevének jelentése színes gömbréteg, mert a napfogyatkozások során vörös fényben ragyog. Vörös fényét a hidrogénnek köszönheti a normál megfigyelési körülmények között átlátszó réteg. A kromoszférában uralkodó hőmérsékleten a hidrogén egy foton kibocsátása közben tér vissza az első gerjesztett állapotából, így a sugárzás túlnyomó része a hidrogén 656,3 nm hullámhosszúságú élénkvörös, ún. H_\alpha-vonalban történik.[44]
    A réteg nem stabil, vastagsága 500 km és 3000 km között változik. A kromoszféra alsó határa definíció szerint a Nap leghidegebb régiója, ahol a hőmérséklet 4500 kelvinre csökken. A kromoszférában azonban a hőmérséklet felfelé haladva ismét növekedésnek indul, és a réteg nagy részében 6–7000 K között mozog, tehát a kromoszféra valamivel melegebb a fotoszféránál. Végül a kromoszféra legtetején a hőmérséklet meredeken emelkedni kezd; a kromoszféra felső határát egyezményesen a 20 000 K hőmérsékletű szinten vonják meg.[45] A hőmérséklettel ellentétben az anyag sűrűsége a kromoszférában is tovább csökken, 10^{-8} g/cm^3-ről 10^{-16} g/cm^3-re.[46]

    A kromoszférát vizuális megfigyelés esetén spektrohelioszkóppal, vagy fényképeket készítőspektroheliográffal, illetve különféle színszűrők segítségével lehet tanulmányozni. Színképelemzésre csak teljes napfogyatkozások alkalmával nyílik lehetőség, mert egyébként a fotoszféra színképe elnyomja a kromoszféráét.

    A kromoszférába gyakran felnyúlik a fotoszféra granulációja, ún. flokkuluszok formájában. A kromoszféra legjellegzetesebb képződményei azonban a napfogyatkozásokkor megmutatkozó szálas szerkezetet alkotó szpikulák és szintén a napfogyatkozások fő látványosságának számító protuberanciák.

    Szpikulák[]

    A kromoszféra jelenségei közül a leggyakoribbak a sok helyen kinyúló, fűszálakra vagy tüskékre emlékeztető, ún. szpikulák. Felfedezésük Angelo Secchi nevéhez fűződik, még 1875-ből, később nevezték el a csillagászok szpikuláknak őket (az angol spike – tüske – szó kapott egy latinkicsinyítőképzőt: spicule). A legfrissebb kutatási eredmények a szpikulákat is összekötik a Nap mágneses mezejével: az 5 perces periódusú p-módusú oszcillációk keltik azokat a lökéshullámokat, amelyek a plazmát a mágneses fluxuscsövek mentén felfelé mozgatják, így a mágneses erővonalak mentén hosszú, „tüskeszerű” gázáramlások jönnek létre.[47]
    A szpikulák nagyjából 1000 kilométer átmérőjű, ám akár 6–10 ezer kilométer magasságba is felnyúló szálakká nyúlnak. Az anyag bennük 20–30 km/sec sebességgel áramlik felfelé, majd elérve a maximális magasságot visszahullik a kromoszféra aljára. A folyamat mindössze 5–10 percig tart, egy-egy szpikula élettartama ilyen hosszú, aztán elenyészik és másik jön létre.[48] Egyszerre hozzávetőleg 100 000 aktív szpikula lehet a napfelszínen.[49]

    Protuberanciák, filamantek[]

    protuberanciák a Nap fotoszférájából a kromoszférába emelkedő, nagyságrendileg 10–100 ezer kilométeres gáznyúlványok. A protuberanciak anyagát a Nap felszínéből kiemelkedő mágneses erővonalak tartják lebegő állapotban. A nyugodt protuberanciak élettartama több hét, az aktív (robbanó) protuberanciák gyorsan változnak, anyaguk ritkán ki is repülhet a Napról. A napkorong peremén a protuberanciak világosak, a korong előtt sötétek, utóbbi esetben filamenteknek is nevezik őket.[45]

    Átmeneti réteg[]

    A naplégkörnek a még „hideg” kromoszféra és a rendkívül forró napkorona között elhelyezkedő részétátmeneti rétegnek nevezzük. Ez a tartomány rendkívül vékony, mindössze néhány száz kilométer széles és itt játszódik le a hőmérséklet 20 000 K-ről a millió kelvines tartományokba történő ugrásszerű növekedése. Az átmeneti réteg megfigyelése a legújabb keletű a naplégkörben: ezen a hőmérsékleten a hidrogén ionizálódik, ami miatt nehéz a megfigyelése, helyette más elemek emisszióját kell segítségül hívni, amelyek színképvonalai azonban áttolódnak az ibolyántúli tartományba, amelyet azonban csak űreszközökről lehet megfigyelni.[50]

    Ha a naplégkör gömbszimmetrikus lenne, amint azt a legegyszerűbb modellek felteszik, akkor ez egy rendkívül vékony réteg lenne a kromoszféra és a korona között. A naplégkör ezen felső rétegei azonban igen távol állnak a gömbszimmetriától, ezért – mint a TRACE (Transition Region and Coronal Explorer) amerikai űrobszervatórium felvételei megmutatták – az átmeneti tartomány túlnyomó része nem egy réteg, hanem egy igen bonyolult, térben és időben változó finom struktúra, amely az egész napkoronát áthatja. Mindazonáltal az ilyen hőmérsékletű gáz a naplégkör térfogatának csak nagyon kis hányadát teszi ki. A klasszikus értelemben vett, rétegszerű átmeneti tartományt csupán az aktív vidékek fölött sikerült megfigyelni az ún. moha képében.

    Korona[]

    A korona megjelenése az 1999-es napfogyatkozás során
    A Hold átvonulása a távoli STEREO-B műholdról nézve. A Földről ezt napfogyatkozásnak látnánk.

    napkorona a Nap légkörének ritka és kiterjedt legkülső része, ahol a hőmérséklet meghaladja a félmillió kelvint. A hőmérséklet tipikus értéke 1–2 millió K, a sűrűségé 109részecske/cm³, szemben a fotoszférával, amely 1017 atomot tartalmaz köbcentiméterenként. A korona sokkal kiterjedtebb, mint a Nap maga; 17 millió kilométeres távolságig mutatható ki a jelenléte. Éles külső határa nincsen. Magas hőmérséklete miatt a koronában a részecskék hőmozgásból adódó sebessége könnyen eléri a szökési sebességet, ezért a napkorona anyaga folytonosan szökik (miközben alulról pótlódik), ebben a folyamatban keletkezik a Napból kiinduló plazmaáramlás anapszél.[51]

    A napkorona sokkal átlátszóbb, mint az alatta levő rétegek, saját fényét azonban a sokkal fényesebb fotoszféráé általában elnyomja. A korona azonban így is megfigyelhető. A teljesnapfogyatkozások idején akár szabad szemmel is (a védekezésre ilyenkor is gondolni kell), vagy koronagráfnak nevezett speciális távcsövekkel, melyekben egy korong kitakarja a Napot, ezzel „mesterséges napfogyatkozást” idézve elő. Speciális, professzionális megfigyelések tehetők röntgentartományban, kihasználva, hogy a naplégkör alig néhány ezer fokos alsóbb rétegei nem elég forrók ahhoz, hogy ilyen nagy energiájú sugárzást bocsássanak ki, a több millió fokos korona viszont igen, végül rádióteleszkópokkal, mivel a koronában végbemenő egyes jelenségek rádiósugárzást gerjesztenek. Mivel a röntgensugárzást a földi légkör elnyeli, s az égbolt háttérfényessége a korona megfigyelhetőségét a látható tartományban is erősen korlátozza, a korona megfigyelésére a földfelszínnél sokkal alkalmasabbak az űrobszervatóriumok.

    Az optikai színképek alapján a korona három komponensét (K-, X-, E-, és F-korona) szokás elkülöníteni:[52]

    • K–korona (fehér korona): a látható fény tartományában lényegében fehér fénnyel világítónak láthatjuk a koronát (napfogyatkozások alkalmával ezt láthatjuk a jelenség leglátványosabb részének), ez a látható korona. A napciklus előrehaladtával alakja folyamatosan változik, maximum idején közel gömbszimmetrikus, minimumkor hosszan elnyúlt alakú.
    • E–korona (emissziós korona): az összetevőire bontott fényben figyelhetjük meg az emissziós koronát, amelyben fényes, emissziós vonalak figyelhetők meg, különböző fémek sokszorosan ionizált ionjainak vonalai. A legismertebb koronavonalak például a tizenháromszorosan ionizált vas (Fe XIV) zöld, a tizennégyszeresen ionizált kalcium (Ca XV) sárga, és a kilencszeresen ionizált vas (Fe X) vörös vonalai. Ezen ionok felfedezése szolgáltatta a bizonyitékot később a korona millió fokos extrém hőmérsékletére.
    • X–korona (röntgen korona): a röntgentartományban is a millió fokos hőmérséklet kísérleti bizonyítékát találjuk, mivel az alacsonyabb hőmérsékletű szférákban nincs elég energia ilyen sugárzás kibocsátásához, itt viszont van. Ebben a környezetben sikerült felfedezni az ún. koronalyukakat, amelyek a mágneses tér nyitott szerkezetének nyomai.

    A színképek alapján egy negyedik koronát is megkülönböztetünk, amely azonban már nem tekinthető szorosan a napkorona részének, ez már a bolygóközi tér porszemeiről visszaverődő fény:

    • F–korona (Fraunhofer-korona): az E-korona emissziós (kibocsátási) vonalaival ellentétben az F-korona a Fraunhofer vonalakból, azaz a sötét elnyelési vonalakból rajzolódik ki.

    Korona anyagkidobódás[]

    Látványos korona anyagkidobódás a Skylab–naptávcső egyik felvételén

    A napkoronából kiinduló, ám a fotoszféra flereihez kapcsolódó jelenség a korona anyagkidobódás (régebbi nevén koronatranziens, angolul CME – Coronal Mass Ejection). A flerek kipattanása folyamán végbement mágneses erővonal-átrendeződésnek olyan következménye is lehet, hogy az aktív vidék fölötti mágneses fluxuskötegek elszakadnak a felszínhez közeli részeiktől és szabaddá válva óriásira (a napátmérő sokszorosára) fúvódnak fel majd nagy sebességgel eltávoznak a Naptól. A korona-anyagkidobódások a naprendszer legnagyobb összefüggő alakzatainak tekinthetők. A felfúvódásnak az az oka, hogy az elszakadás után a fluxuskötegben uralkodó mágneses nyomással és az erővonalak görbültsége miatti feszültséggel immár semmi nem tart egyensúlyt. Az alakzat egy olyan gigantikus buborékként képzelhető el, melynek összetartó ereje nem a felületi feszültség, hanem a mágneses tér. Egy átlagos anyagkidobódással kilövellt anyag tömege kb. egymilliárd tonna lehet (a fenti táblázat alapján a nyugodt Nap ennyit kb. negyedóra alatt bocsát ki a napszél révén), sebessége 20 km/sec-től 1200 km/sec-ig terjedhet.[53]

    Helioszféra[]

    A helioszférikus mágneses tér alakja és elhelyezkedése a Naprendszerben

    A helioszféra nem tekinthető a naplégkör részének, ám bizonyos szempontból mégis az: a napkoronán túl elterülő térrészt a Napból származó és folyamatosan pótlódó részecskék töltik ki. A nap magjától kifelé folyamatosan csökken az anyag sűrűsége, ez a folyamatos csökkenés folytatódik tovább a koronán túl is, a Naprendszer egészét kitölti a napszél gázárama és az általa hordozott részecskék. Fizikai szempontból tehát a Nap anyaga egész a Naprendszer gázdinamikai határáig, a heliopauzáig tart. A helioszféra tehát a napkorona és a heliopauza közötti térrészt, azaz a bolygóközi teretjelenti.

    A heliopauza hozzávetőleg 100 CsE távolságban van, így a helioszféra egy ilyen méretű buborékot jelent, amelyet a Nap anyaga és gravitációs, mágneses, elektromágneses sugárzási hatásai uralnak. Ez a méret, a buborék alakjával együtt folyamatosan változik, függően a csillagszél nyomásától (amely a napciklussal változik) és a szomszédos csillagok csillagszeleinek nyomásától. A „buborék fala” nem más, mint a napszél és a külső csillagszelek erejének kiegyenlítődését kirajzoló vékony gömbhéj, a lökéshullámfront. A heliopauza határát hamarosan eléri a Voyager–1 szonda, majd később a Voyager–2 is.[54][55][56]

    Kémiai összetétele[]

    A Napot két fő alkotóelem építi fel, a hidrogén és a hélium (előbbi 92,1%-át, utóbbi pedig 7,8%-át képviseli számosság szerint - tömeg szerint a hélium 27,4%).[57] Ezek mellett számos további – a csillagászat által „fémek” gyűjtőnéven említett – kémiai elem fordul elő, elsősorban a számosság szerint 0,1%-nyi, a csillag tömegének kb. 1,9%-át kitevő, leggyakoribb elemek, a nitrogén, az oxigén, a szén, a vas, a magnézium, a szilícium, a kén és a nemesgázok. Megfigyelési technikáink azonban csak arra elegendőek, hogy a fotoszféra pillanatnyi összetételét megfigyeljük, a Napban az anyagok eloszlása korántsem homogén, ráadásul dinamikusan változik, így a fotoszféra összetétele nem reprezentálja pontosan a csillag anyagösszetételét.[1][58]

    A magban magfúziós folyamatok zajlanak, amelyek során a hidrogén folyamatosan héliummá alakul át, ezért a belső régiókban a Nap sokkal nagyobb százalékban tartalmaz héliumot, mint a külső régiókban (ezt a jelenséget az tartja fenn, hogy a mag és a fotoszféra között nincsenek jelentősebb közvetlen konvekciós áramlások, amelyek elkevernék, homogenizálnák a Nap anyagát. A Nap fő alkotóelemeinek összetétele tehát folyamatosan változik a fúziós folyamat miatt. A hidrogénnél és héliumnál nehezebb anyagok részaránya nem változik, mivel ezek nem vesznek részt a fúzióban. A csillagfejlődés egy későbbi szakaszában, amikor a hidrogén már átalakult héliummá és beindul a héliumégető fázis, akkor fog a Napban néhány nehezebb elem keletkezni (a lítiumtól egészen a szénig terjedően). A megfigyelt fotoszférán belül azonban a fémes anyagok összetétele is változik az idő múlásával (még ha globálisan nem is változik az összetételük), mivel nagyobb tömegük miatt ezek folyamatosan a mag felé süllyednek és lassan kiürülnek a külső régiókból.[59]

    Csillagunk kémiai összetételét elsősorban a színképelemzés módszerével határozzák meg, amely a Nap (a napfény elemzéséből megállapítható) energiasugárzásának egyenetlenségeiből képes az objektumban előforduló kémiai elemek kimutatására.

    A mágneses mező[]

    A Nap mágneses erővonalai

    A Nap erős mágneses térrel rendelkezik, amit valószínűleg a töltéssel rendelkező anyagtömegek mozgása idéz elő a konvektív zónában, illetve a sugárzási zóna felső részének tekinthető tachoklínában. Csillagunk mágneses mezeje azonban nem hasonlít mindenben a Föld dipól mágneses mezejéhez, hanem attól sokkal bonyolultabb, változó intenzitású, irányú és szerkezetű mező jellemzi. A Nap összes anyaga képlékeny plazma állagú, ez teszi lehetővé, hogy az egyenlítői területei gyorsabban forogjanak, mint a sarkvidékek, ezt nevezik differenciális rotációnak. Az eltérő forgási sebesség miatt a Napmágneses mezejének erővonalai időről időre összegabalyodnak és mágneses hurkok formájában elszakadnak a felszínétől, drámai napkitöréseket okozva ezzel. A 11 évig tartó napciklus során ezek a zavarok egyre gyakoribbá és erőteljesebbé válnak, és végül bekövetkezik a mágneses pólusok felcserélődése. Emellett a ciklikusság mellett a mágneses aktivitás felelős a Napon megfigyelhető szinte minden jelenségért: a napfoltokért, a fáklyamezőkért, a flerekért és napkitörésekért.[60]

    A Nap forgó mágneses mezője a bolygóközi anyagban létrehozza a helioszférikus mágneses teret. Ez a plazmából álló szerkezet betölti szinte az egész Naprendszert, jelenlétét a Nap mágneses mezejének a Föld közelében érzékelhető erőssége is bizonyítja. A Nap közelében 10−4 tesla értékű mágneses mező erőssége a Földnél még mindig 10−9 tesla, pedig a számítások szerint csak 10−11tesla lehetne, ha a bolygóközi plazma nem erősítené fel.

    A Naprendszer[]

    Központi csillagunk nem egymagában álló objektum, hanem egy égitestekből, porból és gázokból, valamint különböző kölcsönhatásokból álló rendszer – a Naprendszer – központi objektuma, amelyet a Nap gravitációja tart egybe. A rendszer határait csillagunk gravitációja jelöli ki, amely mindaddig terjed, ahol már egy másik csillag gravitációs hatása válik erősebbé. Ezen belül helyezkedik el az ún.helioszféra, amelynek burka szintén felfogható a Naprendszer egyfajta határaként. Ez a burok a csillagközi anyagban a Nap által keltett napszél által tisztára fújt buborék, amely addig terjed, ahol más csillagok szeleinek hatása nagyobb már. A Naprendszer két logikai részre osztható, a belső naprendszerre és a külső naprendszerre. Ezeket a csillagkeletkezési folyamat során visszamaradt anyag akkréciós korongjából keletkezett objektumok eltérő fizikai tulajdonságai különböztetik meg. (A belső naprendszer a kőzetbolygók és holdjaik és a szintén kőzetekből felépülő kisbolygók éstörpebolygók birodalma, míg a külső naprendszer a gázokból és különböző jegekből felépülőóriásbolygók, óriásholdak és üstökösmagok hazája.) A Naprendszert teljesen betölti a napszél, a csillagunkból kiinduló folyamatos részecskeáramlás, amely kölcsönhatásba lép az égitestekkel, létrehozva az űridőjárást.[61][62]

    Helye a galaxisban és a világegyetemben[]

    Napunk a Tejútrendszer csillaga, a galaxis Orion-karjának belső peremén, a központi fekete lyuktól25 000 ± 1 000 fényévre kering ellipszis alakú pályáján. Átlagosan 1 000 000 km/h pályamenti sebességével nagyjából 226 millió évente tesz meg egy kört a galaxis központja körül, azaz ennyi idő alatt telik el egy kozmikus év. A Nap a Tejútrendszeren belüli, az ún. Lokális Csillagközi Felhőn halad keresztül éppen, amely egy 30 fényév átmérőjű sűrű anyagfelhő egy nagyobb, 300 fényév átmérőjű üres alakzat, a Lokális Buborékon belül. A sűrű anyagfelhő a Napunk csillagszele által fújt buborékon kívül fekszik, ezt a térrészt több ezer fokos plazma tölti ki, amely korábbi szupernóva robbanások eredménye. A Napnak megfigyelhető a keringéséből adódó saját mozgása is, amelynek látszólagos iránya a Lant és a Herkules csillagkép között, a Vega csillaghoz közeli, ún. Apex-pont felé mutat.[63]

    Csillagunk környezete meglehetősen ritka, egy tíz fényéves körzetben mindössze hét csillagrendszer11 csillaga található. Legközelebb – 4,4 fényévnyire – az Alfa Centauri hármas rendszere található, jelenleg (a szomszéd rendszer csillagainak egymás körüli keringése folytán) ennek legkisebb tagja, aProxima Centauri (más jelöléssel, az Alfa Centauri C) vörös törpe esik a legközelebb hozzánk. A Nap az ún. galaktikus lakhatósági zónában kering a Tejútrendszeren belül, ami sokban segített az életkialakulásában.[64]

    Hatások a Földön[]

    Sugárzási hatások

    A napaktivitás hatása a Földön és környezetében is érzékelhető. Mivel a Földnek van saját mágneses tere, a napszél nem tud közvetlenül belépni a légkörbe, hanem előbb a Van Allen-övben gyülemlik fel. Az övezet belső részén főleg protonok, míg a külső részén elektronok találhatóak, és a sugárzása időnként műszaki problémákat okoz a műholdaknál.

    A Van Allen-öv köríveket alkot a Föld körül, amelyek a sarkok közelében metszik egymást. Az energia nagy része idővel kitör az övezetből és belép a légkör legfelső részébe, ahol sarki fényformájában láthatóvá válik. A sarki fény mágneses pólusok környékén, többnyire a 65. földmágneses szélességi fokon belül látható, de a napfolttevékenység felerősödése idején az egyenlítőhöz közelebb fekvő területeken is megfigyelhető.

    Az erősebb napviharok megzavarják a navigációs és hírközlő műholdak működését, bizonyos repülőjáratokat, a GPS-t, a nemzetközi banki műveleteket vagy akár a mobiltelefonok használatát is korlátozhatja. A napvihar hatással van a pólusok közelében haladó repülőgépek navigációs műszereire, rádiós kommunikációjára, személyzetére és utasaira is. Érintett repülési útvonalak például a New York–Tokió, a New York–Hong Kong és a Peking–Chicago viszonylatok. A kritikus időszakokban ezek használatát korlátozzák, illetve a gépeket más (hosszabb) útvonalra terelik. 1989-ben egy napvihar következtében Québec lakosainak egy része hat napig áram nélkül maradt.[65]

    A napenergia[]

    A Nap energiája elsősorban közeli ibolyántúlilátható és infravörös sugárzás formájában hagyja el a csillagot, de a Nap kisebb mennyiségben mindenféle más frekvenciájú elektromágneses sugárzást is kibocsát, a gamma- és röntgensugaraktól egészen a rádióhullámokig. A Napból másodpercenként kisugárzott energia teljes mennyiségét a Nap sugárzási teljesítményének nevezzük, ez az érték 3,86·1026 watt.[66] A kisugárzott energiamennyiségnek kevesebb mint tízmilliárdod része, 174 petawatt (1015 watt) energia éri el a Földet a légkör felső részén, amelynek nagyjából 30%-a elnyelődik a felhőkben, óceánokon és a szárazföldeken.[67] Az elnyelt energia melegíti az őt elnyelő közeget, ez a hőteljesítmény a beesési irányra merőleges felületen mérve 1,36 kW/m² (ezt neveziknapállandónak), a földfelszínen mérve ideális esetben ~1 kW/m² hőteljesítmény mérhető.[68]

    A Nap energiája hozza létre az ún. kozmikus lakhatósági zónát, azt a Nap körüli gömbhéjat (egy bolygó pályájára értelmezve pedig sávot), amelyen belül az energia elegendő a víz folyékonyan tartásához.

    A napenergia a legbővebben rendelkezésre álló megújuló energiaforrás, a Földet a Napból annyi energia éri el egyetlen óra alatt, mint amennyit az emberiség egy egész év alatt fogyaszt el más energiahordozókból.[69] Azonban jelenleg ezen energia csak elenyésző töredékét hasznosítjuk, elsősorban technikai korlátok miatt, másodsorban a napenergia változó elérhetősége miatt (éjjel nincs napenergia utánpótlás, magasabb földrajzi szélességeken télen lényegesen kevesebb energia érkezik, mint nyáron, illetve a felhős napokon is kevesebb energia éri a felszínt, mint napsütéses időjárás esetén).

    A napenergia hasznosítása az előállítás szempontjából történhet passzív, vagy aktív módon. A passzív módszer az üvegházhatás jelenségét használja fel, amikor megfelelően megválasztott anyagokkal (pl. üveg, műanyag fólia) a hőenergia csapdába ejthető és létesítmények fűtésére használható. Az aktív módszer napkollektorok vagy napelemek alkalmazását jelenti, amikor a napenergiát hő- vagy elektromos energiává alakítják és ezt a másodlagos energiát használják fel. Felhasználási szempontból az energia többféle felhasználás szerint csoportosítható. Eszerint a napenergia használható épületek fűtéséhez, mezőgazdasági termelés hőszükségletének előállításához, vízmelegítéshez, desztillációhoz (tengervíz sótlanítás és/vagy sólepárlás), elektromos áram előállításhoz (naperőművek), járművek meghajtásához, űreszközök energiaellátásához, elektromos eszközök (pl. zsebszámológépekmobiltelefon-töltők, stb.) közvetlen áramellátásához.

    A napenergia el nem nyelt része visszasugárzódik a világűrbe. Ehhez köthető napjaink egyik legégetőbb környezeti problémája, a globális felmelegedés is (legalábbis a legvalószínűbbnek tartott magyarázat szerint). Az ipar, a háztartások és a közlekedés által a légkörbe juttatott üvegház hatású gázok az űrbe visszasugárzódó energia egy részét csapdába ejtik, egyre nagyobb hőmennyiséget akkumulálva a légkör burkán belül, a bolygó felszínén mért hőmérséklet emelkedését okozva.

    Élettani hatások]

    Hatások az emberi szervezetre[]

    Szabad szemmel a Napba nézni fájdalmas és átmeneti vakságot okozhat, ugyanis ebben az esetben 4 milliwatt napenergia érkezik a retinára, ami kissé felmelegíti és bizonyos esetekben – de nem jellemzően – maradandóan károsítja azt. Ez indokolja a napfogyatkozások alkalmával védőszemüveg használatát is. Továbbá az UV-sugárzás az évek során akkor is károsíthatja a szemet, ha nem nézünk bele közvetlenül a Napba.[70]

    Orvosi szempontból megoszlanak a vélemények a Nap szervezetünkre gyakorolt hatásaival kapcsolatban. A bőrgyógyászok kutatásai szerint az UV-A sugarak a bőr korai öregedését okozzák, míg az UV-B-sugárzás nagymértékben megnöveli a bőrrák és a szürke hályog előfordulását. A túlzott és védekezés nélküli napozás hatására bőrünk ráncossá, rugalmatlanná válhat. Az ismétlődő leégések rákos folyamatokat indíthatnak el.

    Jótékony hatása viszont, hogy a Nap ultraibolya tartománya biztosítja, hogy szervezetünkben D-vitamin keletkezzen, ami nélkül csontozatunk elgyengülhet. A nap melegének hatására az erek kitágulnak, fokozódik a bőr vérellátása, felgyorsul a salakanyag-eltávolítás, javul a sejtek tápanyagellátása és kedvezően hat az anyagcsere-folyamat enzimjeinek működésére is. Egyes bőrbetegségek kezelésére, mint az ekcéma vagy a pikkelysömör, kifejezetten ajánlott. Depressziókialakulásának megakadályozására, vagy ellensúlyozására a napozás az egyik leghatékonyabb természetes terápia.

    Hatások a növényi szervezetekre[]

    növények jelentős része (és bizonyos baktériumok) létfenntartásukhoz a napenergia felhasználásával állítják elő az energiát. Az ún. fotoszintézis nevű folyamat során a fényenergia kémiai energiává alakul. A fotoszintézisben a levegőben található szén-dioxidból, a talajból nyert vízből és a fényenergiából a növények szénhidrátot állítanak elő, míg a folyamat meléktemékeként oxigénszabadul fel. A földi növényzet által a fotoszintézis során felhasznált energiamennyiség évi 3000 exajoule,[71] amely a teljes bolygót érő besugárzás 1 ezrelékét sem teszi ki.

    A tudományos megismerésének története

    Korai elméletek, megfigyelések

    SDO felvétel, 2010. március 30-án. A színek különböző gázhőmérsékletre utalnak: a vörös alacsonyabb (közel 60 000 kelvin), a zöld magasabb ennél (egymillió kelvin)

    A Napot számos ókori civilizációban természetfeletti jelenségnek tekintették és istenként – Egyiptombanpéldául főistenként (AmonAton) – tisztelték. Ugyanakkor ugyanezen civilizációk behatóan tanulmányozták a Napot (és a többi égitestet), amelyre mezőgazdasági előrejelzési, vagy hajózási, navigációs ismeretek fejlesztése miatt volt szükség. Ezen megfigyelések első – mai értelemben vett – tudományos eredményét a milétoszi Thalész,matematikus nevéhez köti a tudománytörténet az i. e. 7. századból: a görög tudós megfigyelései alapján kimondta, hogy a Holdat a Nap világítja meg [72], ezzel saját fénnyel rendelkező és nem rendelkező égitestekre osztályozta az égi objektumokat (a Napot pedig az előbbi csoportba sorolta be). Nagyjából fél évszázaddal később Püthagorasz vetette fel a Hold fázisváltozásainak megfigyeléséből, hogy a Föld, a Hold és a Nap gömbölyű [73]. Ezt a tételt az i. e. 3. században nem kisebb gondolkodó igazolta, mint Arisztotelész, amelyet kiegészített azzal a nap- ésholdfogyatkozások megfigyeléséből levezetett felismeréssel, hogy a Föld–Hold és Föld–Nap távolságok különbözőek és a Nap messzebb van, mint a Hold [73]. Ezeket a tanokat általában szabadon terjeszthették a görög bölcsek, ám a tudománytörténetet végigkísérték a vallásiüldöztetések, akadályozva a felfedezések terjedését. Anaxagorasz görög filozófus volt az első az i. e. 5. században , aki természettudományos magyarázatáért – szerinte a Nap egy izzó kőgömb volt, amely nagyobb a Peloponnészoszi-félszigetnél – vallási üldöztetésben részesült. Szokatlan elképzelését istenkáromlásnak minősítették, őt magát börtönbe vetették, a halálos ítéletét csakPeriklész közbenjárására nem hajtották végre.[74]

    A görög filozófusokat követően nem a Nap mibenlétét, hanem inkább látszólagos égi mozgását fürkészték a tudósok. Az ókori Róma napkutatása a Julius Caesar naptárreformjához alapjául szolgáló megfigyelésekben, az év hosszának pontos megfigyelésében merült ki [75]. A következő tudományos idényű megfigyeléssorozat a arab tudósok nevéhez fűződik. A vallási alapokon (a Nap járásához kötött napi imák időpontának pontos meghatározásán) nyugvó megfigyelések közül kiemelhetőAlbategnius excentricitás-változásra vonatkozó felfedezése [76], vagy Ibn Junus több mint 10 000, tudományos igényű nappozíció meghatározása.[77] Mindezek, bár a Nap volt a közvetlen megfigyelési célpont, mégis inkább a Föld keringésére szolgáltattak adatokat, igaz, a megfigyelők az uralkodógeocentrikus világkép miatt úgy tudták, a Nap Föld körüli keringését figyelik meg.

    A következő Nappal kapcsolatos felfedezést a reneszánsz Európa jegyzi a tudománytörténetben: a többi bolygó megfigyelése alapján a tudósok a Föld helyett a Napot kezdték központi égitestként kezelni kimondva, hogy a Föld – és a többi bolygó – kering a Nap körül, nem pedig fordítva. Aheliocentrikus világkép első megjelenése még az ókori görög kultúrából származik, Arisztarkhosz Kr. előtt 300 évvel vetette fel a Naprendszer létét,[78] ám ezek a tanok még feledésbe merültek. A Nap szerepére vonatkozó új elméletet a bolygók égi mozgásának magyarázatára vezette be Nikolausz Kopernikusz lengyel csillagász. A kopernikuszi fordulat[79] néven is említett felfedezés a kozmológialegnagyobb hatású tudományos elmélete volt, amelyet a távcső felfedezése után, az eszköz használatával végzett megfigyelések támasztottak alá.

    A távcső korszakának eredményei[]

    A kopernikuszi tanok bizonyítását – és lényegében az egész csillagászat forradalmát – egy új találmány, a távcső feltalálása tette lehetővé. Az eszköz első tudatos csillagászati felhasználójaGalileo Galilei, olasz természettudós volt, aki az 1600-as évek elején számos korszakos felfedezést tett vele. Ezen megfigyelések jó néhány közvetett bizonyítékot szolgáltattak a napközpontú elmélet mellett. Galilei felfedezte a Jupiter négy legnagyobb holdját, az ún. Galilei-holdakat és ezek mozgásából kiderült, hogy azok az óriásbolygó körül keringenek, amely ellentétes volt a geocentrikus elméletel, miszerint minden a Föld körül kering.[80] Galilei másik ilyen közvetett bizonyítéknak számító megfigyelése a napfoltok felfedezése volt. A korabeli elmélet szerint a Nap „makulátlanul”tökéletes gömb volt, ám a napfoltok megtörték ezt a hiba nélküli képet, az elmélet tarthatatlanságát mutatva.[81]
    Galilei a kopernikuszi tanokat támogató nézeteit publikálta is, ezek alapján több kortársa vált az elmélet hívévé. Ezek egyike volt a Prágában dolgozó császári csillagász, Johannes Kepler, aki a bolygók mozgásának matematikai leírásán dolgozott és levelezésbe is bocsátkozott az itáliai tudóssal. Kepler a távcsövet és elődje, Tycho Brahe akkurátus szabadszemes megfigyeléseit felhasználva megalkotta a Kepler-törvényeket, amelyek pontos matematikai bizonyításként szolgáltak a napközpontú világképhez.[80] A Nap szerepe tehát az 1600-as évek első évtizedeiben alapvető változáson ment át, a Föld körül keringő égitestből a világegyetem központjává vált.

    Bár a távcsővel, mint eszközzel nem álltak közvetlen kapcsolatban Isaac Newton gravitációs kutatásai – sőt a Nappal, mint csillagászati objektummal sem – a tömegvonzás jelenségének felismerése és matematikai leírása újabb alapkő volt a heliocentrikus világkép bizonyításában.[82] Az angol tudós géniusz érdeklődése később a fénytan felé fordult, amelyben az egyik kutatási területe a napfény volt. Egy prizma segítségével sikeresen összetevőire bontotta a fehér napfényt. Ez utóbbi módszert felhasználva fedezte fel később William Herschel az infravörös sugárzást 1800-körül. A 19. századbanvégzett vizsgálatok során Joseph von Fraunhofer elsőként figyelt meg abszorbciós vonalakat a Nap színképében. 1868-ban, a fotoszféra színképvonalainak vizsgálata során Norman Lockyer, egy, a Földön még ismeretlen anyag jelenlétét fedezte fel a spektroszkópia alkalmazásával. Ezt az anyagot – amit 1895-ben már a Földön is elő tudtak állítani – két évvel később a Nap görög neve, Héliosz utánhéliumnak nevezte el.
    A Nappal kapcsolatos talán legnagyobb felfedezés a távcső és a fény összetevőire bontásának (azaz a spektroszkópia alkalmazásának) összeházasításából született. Ennek úttörője Angelo Secchi páter volt, aki a csillagok színképét kezdte tanulmányozni és megállapította, hogy a csillagok színképük alapján néhány jól meghatározható csoportba rendeződnek és Napunk az egyik csoportba tökéletesen beleillik. Megszületett tehát a Nap mibenlétének legpontosabb meghatározása: a Nap egy csillag.[83] Ez a felfedezés egyben a világegyetem központi égiteste címtől is megfosztotta a Napot, galaxisunk akkoriban ezernyinek hitt, ma százmilliárdnyinak tudott csillagának egyikévé vált.

    A legtovább fennmaradt tudományos rejtély a Nap belsejében zajló folyamatok természete, a „Nap működési elve” volt. A korai elméletek – melyek szerint hidrogén és oxigén egyszerű égése, hidegmeteorrajok becsapódása, vagy részecskék kölcsönös megsemmisülése szolgáltatná a Nap energiáját – sorra tarthatatlannak bizonyultak, elsősorban mert ezek a folyamatok túl rövid lefolyásúnak bizonyultak a Föld akkor gondolt korához képest. A vita a 19. század derekán aHermann von Helmholtz és Charles Darwin által felvetett elméletek ellentéteiben csúcsosodtak ki. Helmholtz egy 1854-es előadásában fizikai magyarázatként azt vetette fel, hogy a Nap energiáját a hatalmas gáztömeg gravitációs összehúzódása szolgáltatja, az elmélet feltétlen hívévé váló Lord Kelvin pedig támogatandó az elméletet 24 millió éves élettartamot[84] számított ki a folyamatra, amely elegendőnek látszott ahhoz, hogy „beleférjen a történelem”. Öt évvel Hemholtz elmélete után tette közzé Charles Darwin A fajok eredete című munkáját, amelyben az egyik angliai természeti képződmény kialakulását 300 millió évre becsülte. A két elmélet hívei azonnal vitába szálltak, de az evolúciós és geológiai folyamatok meggyőzően tanúsították a nagyságrendekkel nagyobb időskálák szükségességét, mint amit a fizikusok a Nap (és értelemszerűen a Föld) életkorára meghatároztak. A fizikusok előtt álló probléma hosszú ideig az volt, hogy olyan folyamatot találjanak, amely elegendő hosszú ideig működik önfenntartó módon és a megfelelő mennyiségű energiát termelve ahhoz, hogy összecsengjen a más módszerekkel mérhető földtörténeti kormeghatározásokkal.
    A megoldáshoz vezető kulcslépés az atommagok belsejének megismerése, a radioaktivitás Pierre Curie általi 1903-as felfedezése volt. 1904-ben Ernest Rutherford vetette fel, hogy a Nap energiájátnukleáris reakciók biztosítják. 1905-ben pedig Albert Einstein „Függ-e a test tehetetlensége az energiájától?” című cikkében tette közzé híres E=m·c² képletét, illetve azt a teóriát, hogy az anyag képes átalakulni energiává. George Gamow 1928-ban fedezte fel, hogy az azonos töltésű, egymást taszító részecskék is képesek egymáshoz közel kerülni, megteremtve a magfúzió elméleti alapjait. 1938-ban Carl Friedrich von Weizsäcker Hans Bethe felvetése alapján az előzőek szintézisével leírta az ún. CNO-ciklust, egy magfúziós folyamatot, amelyben hidrogénatomok héliumatomokká alakulhatnak át szén, nitrogén és oxigén katalizáló jelenléte mellett.[24]
    A probléma végső megoldása Hans Bethe nevéhez fűződik. 1939-ben jelent meg „Energy Production in Stars” című cikkében publikálta először a proton-proton ciklus elméletét, a Nap energiájának 98,5%-át biztosító magfúzió elméletének kidolgozását. Az elmélet kimondja, hogy a hidrogénatomok egyesüléséből héliumatomok, energia, fotonok és neutrínók keletkeznek. A neutrínó sikeres detektálásával bizonyítható volt az elmélet, amelyre 1956-ban került sor az Egyesült Államokban.[85]

    Az űrkorszak megfigyelései – Napkutató űreszközök[]

    Az űrkorszak első felfedezéseinek egyike rögtön a Naphoz kötődik. A Luna–2 1959. szeptemberében a Hold felé tartva felfedezte a napszelet [86]. A kifejezetten a Nap megfigyelésére szolgáló elsőűrszondák a NASA Pioneer-5, 6, 7, 8 és 9 jelű szerkezetei voltak, 1959 és 1968 között. Ezek a Földdel megegyező távolságban keringtek a Nap körül és a napszél alapos tanulmányozása mellett a Nap mágneses mezejének a feltérképezése is nekik köszönhető. A Pioneer–9 különösen hosszú életűnek bizonyult, még 1987-ben is közvetített adatokat. A szondák nem tökéletesen pontosan, csak közelítően a Föld pályáján keringenek a Nap körül, ezek a kis eltérések azonban az idő múlásával a földpálya különböző pontjaira juttatták az eszközöket, a Nap éppen nem látható oldalát is megfigyelhetővé, az ott zajló jelenségek alapján az űridőjárás előrejelzését lehetővé téve.

    Egy különösen sikeres kísérletsorozat volt a Skylab-program napobszervatóriumával végzett megfigyeléssorozat. Az 1973-ban feljuttatott Skylab űrállomás egy külön részegységet kapott (azApollo holdkompból kialakított Apollo távcsőállványt), amellyel a három, egymást váltó legénység figyelhette meg a Napot. A megfigyelések a látható fény tartománya mellett kiterjedtek a spektruminfravörösultraibolya és röntgen tartományára is. Ez utóbbi tartományban fedezték fel az ún.koronalyukakat, a napkorona azon részeit, ahol a mágneses tér szerkezete nyitottá válik.[87] A Skylab először szolgáltatott részletes képet a kromoszféra szerkezetéről, a szpikulákról – a kromoszférából a napkoronába felnyúló anyagnyalábokról –, e megfigyeléssorozat nyomán jött létre az első alapvető modell az atmoszféráról. A kizárólag a sarkok környékén előforduló jelenségekről (óriásszpikulákról, hosszú időn át fennmaradó koronalyukakról, nyitott mágneses vonalakról, amelyek a nagy protuberanciák kipattanásának helyei), az energiasugárzásról, amely a belső hőt juttatja el a csillag belsejéből a külső rétegekbe is a Skylab adott először pontos információkat a kutatók kezébe. Ezen megfigyelések voltak az első részletes összképet nyújtó megfigyelések az átmeneti tartományról és elsőként ezekből kaptak a tudósok valós képet a Nap jelenségeinek méreteiről, végül a legtöbb legtöbb jelenségben közrejátszó mágneses erők kulcsszerepét is ezen mérések fedték fel.[88]

    A következő fejlődési lépcsőt a Helios-program (egy közös német-amerikai napkutató program) űrszondái képviselték a Napmegfigyelésben. Az 1974-ben és 1976-ban felbocsátott Helios–1 és –2már a Merkúr pályáján belülről végzett kutatásokat. Rekord közelségbe jutottak a Naphoz és rekord sebességet is értek el, és a Föld távolságában érzékelhetőnél sokkal intenzívebb napszelet kutathatták.[89]

    Yohkoh űrszonda

    A japán Yohkoh műholdat 1991-ben bocsátották fel és feladata az volt, hogy röntgencsillagászati eszközökkel évtizedes időtávon figyelje meg a Napot. A szonda nagyjából a napciklus csúcsán startolt és végül élettartama lehetőséget nyújtott egy teljes ciklus nyomon követésére. Röntgen képalkotó, illetve röntgen- és gammaspektrográf műszerei a napkoronát figyelték, fontos szerepet játszva a több millió fokos korona mágneses fűtési mechanizmusának megértésében és a folyamatok feltérképezésében az űridőjárási előrejelzések megteremtésében, a nagy energiájú flerek keletkezési helyeinek és mechanizmusának tanulmányozásában. A szonda egy 2001-es napfogyatkozás alkalmával elvesztette a Napot és orientációs rendszere meghibásodott, így soha többé nem sikerült megfelelő irányba fordítani, majd végül 2005-ben megsemmisült.[90][91]

    Az Ulysses űrszonda egy teljes cikluson át (19902001) tanulmányozta a Napot, a bolygók keringési síkjából kilépve, így rengeteg új információt szolgáltatott a Nap pólusairól is.

    Az egyik legfontosabb napkutató űrszonda a SOHO (Solar and Heliospheric Observatory), amelyet a NASA és az Európai Űrügynökség közösen épített. 1995. december 2-án indult útjára, és – bár küldetését eredetileg csak kétévesre tervezték – máig érkeznek róla adatok, sőt a SOHO az űridőjárás előrejelzés első számú szondája; segítségével több mint 1000 üstököst fedeztek fel.

    A japán Hinode (napfelkelte) Solar-B jelzésű űreszköz 2006. szeptember 22-én startolt Japánból. Feladata a mágneses tér ki- és átalakulása monitorozásának kutatása, a Nap teljes energiakibocsátásában bekövetkező változások észlelése, a nagyenergiájú sugárzások keletkezésének tanulmányozása.[92]

    Az SDO (Solar Dynamics Observatory[93]) napdinamikai obszervatóriumot a NASA 2010. február 11-én indította útjára, azzal a céllal, hogy az obszervatórium megfigyelései révén meg lehessen jósolni a napkitöréseket, amelyek a Föld élővilágára és a távközlési rendszerekre is nagy hatást gyakorolnak. A műhold adatokat gyűjt a Nap mágneses teréről, a forró plazmáról a napkoronában, és bolygók ionoszféráját létrehozó sugárzásokról.

    Modern napmegfigyelés

    Naptávcsövek, magnetohidrodinamika[]

    A megfigyelési technikák fejlődésével nemcsak a világűrből nyílik lehetőség a Nap megfigyelésére, hanem a Földről is. Ezen új generációs napobszervatóriumok példája a La Palmán telepített Svéd Napteleszkóp,[94] vagy a hawaii Mauna Loán felépített napobszervatórium. Ezekkel legfőképpen a fotoszféra jelenségeit vizsgálják a szakemberek. A fotoszféra legjellegzetesebb "objektumai" a napfoltok. A földfelszíni távcsövek legnagyobb problémája a légköri nyugtalanság (szaknyelvenseeing), az a jelenség, amely miatt a „csillagok hunyorognak”, ám számítógépes képjavítási módszerekkel a 2000-es évekre sikerült ennek hatását minimalizálni, drámaian javítva ezen távcsövek képfelbontását. A Svéd Naptávcső esetében a napfelszínen 75 kilométeres felbontással lehet alakzatokat azonosítani, így lehetőség nyílt a napfoltok penumbrája (peremvidéke) finomszerkezetének vizsgálatára. A foltok penumbrája szálas szerkezetet mutatott a korábbi megfigyeléseken, ám ezzel a fejlettebb technológiával a szálakon belül is sikerült még finomabb szerkezeteket megfigyelni. Ezen megfigyelések már a magnetohidrodinamika tudományába vezetnek be, a Nap mágneses mezejének még pontosabb feltérképezésének lehetőségét nyújtva.

    Magnetodinamikai hullámok, a TRACE obszervatórium felvétele[95]

    Ezzel a technikával sikerült megfigyelni az ún. Alfvén-hullámokat is, amelyek a napkorona fűtéséért felelősek. A közel 20 km/másodperc sebességgel mozgó mágneses hullámokon keresztül történik a több millió fokos napkorona fűtése.[96] A hőmérséklet a Nap egyes rétegeiben igen eltérő értékeket mutat; a magban 15 millió kelvin, de kifelé haladva folyamatosan csökken, és az optikai felszínen, a fotoszférában már csak 5800 kelvin az átlaghőmérséklet. Közvetlenül a fotoszféra felett, a kromoszférában pedig egy mindössze 4000 kelvines réteg is található, de ettől a ponttól kifelé haladva ismét növekedni kezd a hőmérséklet; a koronában már az egymillió kelvines forróság számít normálisnak.[97]
    Ennek az ellentmondásnak a megmagyarázására két elmélet született. Az első szerint a korona felforrósodását a konvekciós zónában fellépő turbulencia során keletkező hang, gravitációs és magnetodinamikai hullámok a koronán áthaladva átadják az energiájukat az ott található gázoknak. A másik elmélet szerint a hőenergia átadása mágneses hullámok útján történik.[98] A kutatások eredményei a mágneses fűtés elméletének a helyességét erősítik meg, mert a legtöbb hullám valószínűleg nem tud feljutni a koronáig, ugyanis a ritka anyag nem teszi lehetővé a hullámok terjedését, ellenben az Alfvén-hullámok láthatóan képesek erre.[99]

    Neutrinomegfigyelés[

    A megfigyelések egy másik területe a neutrínók megfigyelése. Ennek az elemi részecskének a detektálására az 1930-as években megfejtett magfúziós működési elv (lényegében Albert Einstein E0m·c² tételének gyakorlati működésének) kísérleti bizonyítása miatt volt szükség. A neutrínók detektálása azonban nem volt egyszerű, először 1956-ban sikerült közvetlen kimutatásuk. Azonban a megfigyelési technikák bonyolultsága újabb és újabb elméleti és megfigyelési problémákat vetett fel. A napneutrínó-probléma néven ismertté vált tudományos kutatási témát végül közel hetven év után sikerült lezárni. (A magban keletkezett neutrínók a Napot elhagyva szétszóródnak a világűrben, de az évekig tartó vizsgálatok során az elméletileg várható neutrínómennyiségnek csak a harmadát sikerült megfigyelni, ezt az ellentmondást nevezték „a napneutrínók rejtélyének”.) A probléma megválaszolására több elmélet született; egyesek szerint a vártnál kisebb neutrínómennyiséget az okozza, hogy a Nap belső hőmérséklete alacsonyabb a jelenleg feltételezettnél, mások szerint pedig a neutrínók oszcillálnak és egy részük korábban kimutathatatlan neutrínótípusok (müon- és tauneutrínó) formájában ért a detektorokhoz, miután átszelte a Nap és Föld közötti távolságot. A napneutrínókkal kapcsolatos, végül sikerre vezető vizsgálatot a Sudbury Neutrínó Obszervatóriumbanvégezték, mely képes volt mindhárom fajta neutrínó észlelésére, és valóban sikerült kimutatni a neutrínóoszcillációt, megkapva a napmodellekből számított neutrínómennyiséget.[100][101]

    Végül pedig van egy érdekes megfigyelési technika, amikor nem a Nap a megfigyelendő objektum, hanem csillagunk maga a megfigyelő eszköz, és gravitációs lencseként működik. Einsteinrelativitáselméletének egyik megjósolt jelensége volt a nagy tömegű objektumok által elhajlított fénysugár. Tudósoknak napfogyatkozásokon sikerült az eltakart napkorong mellett olyan csillagokat észlelniük, amelyek lényegében a Nap mögött voltak az észlelés időpontjában, viszont fényük mégis eljutott a megfigyelőhöz. Ezzel a technikával egyes tudósok szerint áttörést lehetne elérni más elektromágneses hullámok észlelésével a SETI kutatások területén is.[102]

    Napszeizmológia]

    Az 1960-as években csillagászok Doppler, vagy más néven radiális sebességméréseket végeztek a fény egyes színképvonalai mentén és azt tapasztalták, hogy a Nap felszínén túlnyomórészt függőleges (fel-le) mozgások figyelhetők meg az anyagban, „mintha lélegezne az égitest”. Lényegében ez lehet a sugárnyomás és a gravitáció „birkózásának” egyensúlya, amely egyben tartja a csillagot. A mozgások egy 5 perces periódust követnek, ezért nevezték el a jelenséget öt perces oszcillációnak. Ezeket a sajátrezgéseket különböző erőhatások hozzák létre, és attól függően, hogy a csillag belsejében levő anyagot az egyensúlyi állapotba milyen erő téríti vissza, többféle sajátrezgéstípust sikerült megkülönböztetni. Amikor a sugárnyomás felelős a sajátrezgésért azt azoszcillációt p–módusnak („p”, mint pressure), a gravitáció keltette rezgéseket pedig g-módusnak („g”, mint gravity) nevezzük. Ezeken kívül felületi hullámok is megjelennek, amelyek az f-módust („f”, mintfundamental) alkotják.
    A felfedezést a Nap belső szerkezetének megfigyelésére használhatjuk fel. A Föld belsejénekföldrengéshullámok általi feltérképezéséhez hasonlóan a naprengések is kirajzolják a belső szerkezetet, ugyanis a különböző sajátrezgések a Nap más és más rétegeiben érik el maximálisamplitúdójukat.[103]

    Megoldásra váró elméleti problémák[]

    A napdinamó probléma

    A modern kor űrszondás és földfelszíni megfigyelései egyértelműen kimutatták, hogy a Napon megfigyelhető jelenségek zömét a mágneses mező/mágneses erők hozzák létre. Ezen mágneses tér eredetének a Nap belsejében működő, egy ún. napdinamó-hatást jelölik meg az asztrofizikusok. Azonban a napdinamó működésére vonatkozó elfogadott modell még nem létezik. A napdinamóval kapcsolatban csak az a jelenségrendszer ismert, amelyre a modellnek meg kell felelnie:[104]

    • 11,2 éves mágneses ciklusra
    • A 11,2 éves ciklus alatt a napfoltcsoportoknak a Nap egyenlítőjéhez viszonyított vándorlására (az ún. pillangó diagram[105])
    • Hale–szabályra, azaz arra a jelenségre, hogy a napfoltcsoportok vezető és követő része ellentétes polaritást mutat, illetve adott ciklusban az ellentétes félgömbökön a foltcsoportok polaritása ellentétes a vezető és a követő oldalukon, valamint hogy ezek a polaritások 11 évente – napciklusonként – felcserélődnek[106].
    • A Joy–törvényre, vagyis arra a jelenségre, hogy a napfoltcsoportok szöget zárnak be az egyenlítővel
    • A napfáklyáknak a napfoltcsoportokkal ellentétes irányú vándorlására (az ún. kiterjesztett pillangódiagram)

    A halvány fiatal Nap problémája

    A Nap fejlődésével foglalkozó modellek szerint mintegy 3,8–2,5 milliárd évvel ezelőtt, a földtörténetiőskorban a fényenergia kibocsátása csak a jelenlegi szint 70%-át érte el, ami azért problémás, mert ageológiai vizsgálatok szerint a Föld felszínének az átlaghőmérséklete nagyjából állandó volt az idők során. Sőt a fiatal Földön valamivel melegebb is volt, mint napjainkban. Nagy valószínűséggel ez annak köszönhető, hogy akkoriban a légkör nagyobb arányban tartalmazott üvegházhatást elősegítő gázokat, főleg szén-dioxidot és ammóniát.[107]

    A lítium hiánya[]

    Napunk más hasonló méretű és a csillagfejlődés hasonló szakaszában tartó csillaghoz képest lényegesen kevesebb lítiumot tartalmaz. Nagyjából 60 évvel korábbi megfigyelés, hogy a Nap fotoszférájában a hozzá hasonló típusú társaihoz képest csak mintegy 1 százaléknyi lítium mutatható ki, annak ellenére, hogy a kozmológiai modellek szerint a lítiumgyakoriságnak egyformának kell lennie a hasonló csillagokban. Ennek oka máig tisztázatlan.[108]
    Csillagászok egy csoportja 2009-ben közelebb került a megoldáshoz, még ha kimerítő magyarázattal ők sem szolgáltak a jelenségre. Egy 500 csillagra kiterjedő, éveken át tartó méréssorozatból azt a megfigyelést tették, hogy a mintában szereplő 70, bizonyítottan bolygóval rendelkező csillag lítiumtartalma szintén alacsonyabb a bolygórendszerrel nem rendelkező társaiénál. Ennek alapján vonták le azt a következtetést, hogy a bolygók – csillaguk belsejének mozgásviszonyainak átrendezésével – a kémiai elemek eloszlását befolyásolhatják, amelynek nyomán a lítium hatékonyabban süllyedhet a Nap magja felé, ahol a „p-p lánc” folyamataiba bekapcsolódva részt vesz az energiatermelésben és héliummá alakul. Azonban ez a felfedezés csak a kezdő lépés az elméleti probléma megoldásában – mindemellett a tudományos közösség vitafolyamatát is ki kell állnia –, a pontos hatásmechanizmus még ismeretlen, ennek megoldása még várat magára.
    További érdekesség, hogy a megfigyelés új eszközt jelenthet az exobolygó-kutatásban, hisz a tételt megfordítva – „amelyik csillagnál kisebb lítiumgyakoriság figyelhető meg, annak nagy valószínűséggel bolygórendszere van” – a korábbi megfigyelési technikáknál egyszerűbb eszközökkel lehet bolygókat magukban foglaló idegen naprendszereket találni.[109]

    A Nap amatőrcsillagászati megfigyelése

    A Napot a hivatásos csillagászok mellett (lásd: Modern napmegfigyelés) az amatőrcsillagászok is megfigyelik, utóbbiak kivételesen nagy számban. A nagy tömegű megfigyelés statisztikailag fontos, sok csillagászati adatbázishoz szolgáltat alapot.

    A napfogyatkozás megfigyelése veszélyeket rejt magában, tilos szabad szemmel megfigyelni vagy olyan távcsövet használni, amelyet megfelelő szűrővel nem láttak el. Az utóbbi eset azonnali teljes vakságot okozhat, az előbbi látásromláshoz, extrém esetben vaksághoz vezethet. A megfigyeléshez használjunk különböző – kereskedelemben kapható – optikai szűrőket, speciálisan napfogyatkozáshoz való szemüvegeket. Sem a kormozott üveg, sem a CD, sem a feketére exponált film nem véd meg a káros sugárzásoktól, sőt a pupilla kitágulása révén még a szabad szemes megfigyelésnél is nagyobb károkat okozhatnak! [110]

    Közvetlen napmegfigyelések]

    Az amatőrcsillagászok az általuk leginkább preferált megfigyelési területek és a rendelkezésre álló eszközpark szerint specializálódnak, így ezen közösségekben sok napmegfigyelő amatőr végez megfigyeléseket. Az ilyen napmegfigyelés alterületei:[111]

    • Szabadszemes megfigyelések
    • Távcsöves megfigyelések
    • Hα szűrés, protuberanciatoldat

    szabadszemes megfigyelések természetesen csak valamilyen fényszűrő segítségével végezhetők (pl. napszűrő fóliákon, vagy ilyen fóliából készült, főként a napfogyatkozásokhoz kapható szemüvegeken. esetleg hegesztőszemüvegen keresztül). Ezek kizárólag a különösen nagyméretű napfoltok (amatőrcsillagász terminológia szerint „szabadszemes napfoltok” észlelésére irányulnak. Mivel az ilyen nagyobb napfoltok főként napfoltmaximumok környékén tűnnek fel, a maximumok idejét is könnyebb megállapítani ezek észlelésével (ilyen szabadszemes napfolt a maximum környékén évi 5–10 darab fordul elő, napfoltminimum idején pedig egy sem).

    A legnagyobb számú amatőr napmegfigyelés távcsöves megfigyelések formájában realizálódik. Csillagunk megfigyeléséhez nem kell különleges távcsővel rendelkeznünk, ám optimális eszköznek a kis fényerejű (f/15–f/50) távcsövek tekinthetőek. Ezek természetesen csak valamilyen fényszűrés alkalmazásával használhatók, amely lehet a távcső bemeneti nyílására helyezett – általában speciális, fémmel felgőzölt műanyag – szűrőfóliával, vagy a távcső okulárja elé rögzített szűrőüveggel oldható meg. Vizuális, rajzos és fotografikus észlelések keretében megfigyelhető a fotoszféragranulációja, a napfolttevékenység, valamint a flerek. A napfoltok megfigyelése, különösen formájuk és változásuk rögzítése mellett napi rendszerességű megfigyeléssorozattal „közepes napi gyakoriságot” és „relatívszámot” szoktak leggyakrabban számítani az amatőrcsillagászok. Ezen adatsorokból jól levezethető a napciklus alakulása a napfoltok számának változásából.

    A távcsöves megfigyelések speciális válfaját jelenti a Hα szűrés, vagy protuberanciatoldatalkalmazása. Ezek olyan speciális eszközök, amelyek vagy fényszűréssel, vagy a fényút egy részének kitakarásával szűkíti a megfigyelhető jelenségek körét, elsősorban a flerekre, protuberanciákra. Ezek az anyagkiáramlások hidrogénből állnak, így a csak a hidrogén hullámhosszán áteresztő szűrő alkalmazásával ezekre koncentráló megfigyelések végezhetők, ezt nevezzük Hα szűrésnek. A protuberanciatoldat egy mesterséges holdat hoz létre a távcső bemeneti nyílása előtt, így a megfigyelő számára mesterséges napfogyatkozás figyelhető meg. A természetes napfogyatkozás is alkalmat kínál a napkorong peremén végbemenő flerek, protuberanciák megfigyelésére, így ez a mesterséges napfogyatkozás is ugyanilyen alkalmat kínál a ezen jelenségek obszervációjára.

    Napfogyatkozás]

    Totalitás a 2010. július 11-i napfogyatkozáskor

    A Nap megfigyelésének speciális területét jelenti a fogyatkozások (a napfogyatkozás és aholdfogyatkozás megfigyelése). Tudományos jelentősége mellett egyre nagyobb laikus tömegeket megmozgató látványosság is a jelenség megfigyelése.

    Napfogyatkozás akkor jön létre, amikor a Hold pontosan a Föld és a Nap közé kerül, azaz újholdkor. De nem minden újholdkor, hanem csak akkor, ha a Föld körüli pálya leszálló, vagy felszálló csomópontjában van éppen újholdkor a Hold. (A holdpálya nagyjából 5°-os szöget zár be az ekliptikával, azaz a Hold hol kissé a Földet a Nappal összekötő képzeletbeli vonal felett, hol pedig alatta van. Amikor a Hold átszeli e vonalat (vagy legalábbis a közelébe kerül) – ezek a fel- ill. leszálló csomópontok –, akkor figyelhető meg a napfogyatkozás.) A Hold átmérője 400-szor kisebb a Napénál, ám 400-szor közelebb is van, ez okozza, hogy a Nap és a Hold látszólagos átmérője közel azonos, így amikor megfelelő helyzetbe kerülnek az égitestek, akkor a Hold teljesen képes eltakarni a Napot. Teljes napfogyatkozás idején figyelhető meg a napkorona (a Nap több millió fokosra hevült külső légköre), valamint a napkorong szélén éppen zajló napkitörések, protuberanciák.[112][113]

    Fő típusai:

    • Teljes napfogyatkozás: a Hold látszólagos átmérője nagyobb a Napénál, ezért a közelebbi égitest teljesen eltakarja a távolabbit egy földi megfigyelő számára.
    • Részleges napfogyatkozás: a Hold árnyéka vagy nem teljesen vetül a Földre, vagy teljesen rávetül, de a földi megfigyelő nem tartózkodik teljesen a holdárnyék vonulási sávjában és így számára a Hold nem takarja el teljesen a napkorongot.
    • Gyűrűs napfogyatkozás: ha a Nap látszólagos átmérője nagyobb a Holdénál (amikor égi kísérőnk pályájának földtávolpontja közelében éri el a fel- vagy leszálló csomópontot) és utóbbi nem takarja el teljesen a napkorongot.

    Holdfogyatkozás[]

    A holdfogyatkozás is egy, a Nap–Föld–Hold rendszer speciális együttállásából adódó jelenség, amelyben a Föld a Nap és a Hold közé kerül, és a Föld árnyéka vagy félárnyéka a Holdra vetődik. A napfogyatkozással ellentétben ez a jelenség teliholdkor jöhet létre és a Holdnak ugyanúgy a holdpálya felszálló, vagy leszálló csomópontja közelében kell tartózkodnia. És szintén szemben a napfogyatkozással, ez a jelenség nemcsak a földfelszín egy szűk sávjából figyelhető meg, hanem bárhonnan, ahonnan látni a Holdat. A holdfogyatkozás órákon át tartó jelenség.[113]

    Fő típusai:

    • Teljes holdfogyatkozás: a Hold teljesen a Föld árnyékába kerül.
    • Részleges holdfogyatkozás: a Hold csak részben lép be a Föld árnyékába.

    Átvonulások megfigyelése

    Vénusz átvonulása a napkorong előtt 2004.június 8-án

    Merkúr átvonulások[]

    A naphoz legközelebb keringő bolygó, a Merkúr időről időre elhalad a csillag előtt a földi megfigyelő szemszögéből nézve (azaz ilyenkor a Nap–Merkúr–Föld rendszer együttállása, egy egyenesre rendeződése következik be). Ezek az átvonulásokviszonylag sűrűn bekövetkező jelenségek, 100 év alatt 13–14 alkalommal fordulnak elő. Ilyenkor a bolygóegy apró fekete pöttyként (lényegében egy nagyon szabályos kör alakú, penumbra nélküli, gyorsan mozgó napfoltként) jelenik meg a megfigyelők előtt. A megfigyelést a legegyszerűbb amatőr távcsövekkel is el lehet végezni, sőt elméletileg akár szabad szemmel is (bár ez utóbbi nagyon nehéz megfigyelésnek számít, csak gyakorlott megfigyelő vállalkozhat rá nagyon nyugodt légköri viszonyok mellett, mivel a bolygó látszólagos mérete a szem felbontóképességének határán van ilyenkor).[114]Az utolsó Merkúr átvonulás 2006-ban volt, a következőre 2016-ban kerül sor.

    Vénusz átvonulások

    Vénusz átvonulásai hasonlóak a Merkúréihoz, azzal az egyetlen különbséggel, hogy a sokkal ritkábbak a legbelső bolygóéinál, évszázadonként mindössze két alkalommal. Csillagászati pályaszámítások szerint 6000 év alatt (kr. e. 2000–4000-ig) mindössze 81 átvonulás volt vagy lesz, a21. században 2004-ben és 2012-ben volt. Az átvonulások szabályos időrendben történnek, az egyes előfordulások között rendre 8–121,5–8–105,5 év telik el. Az átvonulások ritka bekövetkezéséért a bolygók pályahajlása (az ekliptika síkja és a bolygó Nap körüli keringésének síkja közötti szögeltérés) felelős. A Vénusz és a Föld pályája között 3,39° eltérés van, így az esetek többségében a földi megfigyelő nézőpontjából a belső bolygószomszédunk vagy a Nap „alatt”, vagy „fölött” halad el (a nap látszó átmérője 0,5°, amely nagyságrenddel kisebb a 3,39°-nál). Csak akkor kerül sor átvonulásra, ha a Vénusz pályájának ún. leszálló, vagy felszálló csomópontján van (azaz a pálya éppen metszi az ekliptika síkját), amikor a Nap és a Föld közé kerül.[115]
    Megfigyelési szempontból a jelenség sokkal látványosabb. Mivel a bolygó sokkal nagyobb és sokkal közelebb is van a Földhöz, ezért látszólagos mérete sokkal nagyobb is (55"-60", azaz a Merkúrénak 5–6-szorosa), megfelelő védőeszközzel szabad szemmel is könnyen felfedezhető a napkorong előtt. Látványa lényegében megegyezik a Merkúréval, egy kerek, penumbra nélküli napfolt. Természetesen igazán távcsővel nyújt élményt a megfigyelés. A megfigyelések általában a kontaktusokra (a nap peremének a bolygó általi érintésére – kívülről is és belülről is –), valamint az átvonulás időtartamára vonatkoznak.

    Helye a kultúrában

    , az egyiptomi napisten, fején a napkoronggal

    A napenergia minden korban az emberek számára az életet jelentette, a megújulást és mindezek fenntartását. Mindennapi életüket tették függővé attól, hogy a Nap az égen milyen pályát jár be és az égi jelenségek határozták meg sorsukat. Az emberi kultúra kezdetein a természeti vallások – mint minden fontosabb természeti jelenséget – a Napotistenségnek tekintették. Az ebből a kulturális alapból kifejlődőtöbbistenhívő vallások már megszemélyesítették az általuk istenként tisztelt jelenségeket (köztük természetesen a Napot is), mitológiai történetekkel építve fel az istenek személyiségét. Később, az egyistenhívő vallások teljes térhódításával a Nap vallási, kulturális jelentősége erősen lecsökkent, míg végül a tudományos kutatások széleskörűvé válásával, a heliocentrikus világkép elfogadásával együtt ez a szerep lényegében megszűnt.

    Az egyetlen kulturális vonatkozás, amelynek gyökerei még a többistenhívő mezopotámiaiegyiptomi és görög kultúrákból erednek és máig él, az égitestek mozgásából következtető jóslásokat készítő asztrológia.

    A Nap mint istenség]

    A Nap tisztelete ősidőktől fogva a legősibb vallási nézetek közé tartozott, a Napot istenként tisztelték és a napkultusz aFöld minden táján elterjedt, egyes országokban pedig meghatározó vallásként működött. Az, hogy a világosság legyőzi a sötétséget, egyfajta szimbólum volt arra, hogy az élet folyamatos és végtelen, így minden kultúrába beépült az e jelképet fizikailag hordozó Nap. Az ünnepek gyakran a téli napfordulóhoz kapcsolódtak, amikortól már az éjszakák megrövidülnek, a nappalok pedig hosszabbak lesznek.

    A napkultusz az i. e. 4–3. évezredben jelent meg erőteljesebben a mezopotámiai (sumer) Utu, (akkád)Samas és a babilóniai-asszír vallásban, valamint Egyiptomban, saját napistenségekkel. Egyiptomban az 5–6. dinasztiák idején  napisten kultusza került előtérbe. Ehnaton fáraó maga volt a Napisten,Atonnak nevezte magát. Törvénybe foglalta az egyistenhitet, amely haláláig állt fenn.

    Hellaszban pedig Héliosz napistent korán azonosították a művészetek, a jóslás és gyógyítás istenével, majd később egyre inkább Apollónnal, az egyik főistennel. A késő ókorban többmisztériumvallás központja a minden nap meghaló és újjászülető Nap lett (ld. MithrászElagabalusistene, vagy az Aurelianus által tisztelt Sol-Héliosz).

    A Nap istenkénti tisztelete természetesen nemcsak az európai történelemtanítás fő kultúrköreiben (az ókori európai és közelkeleti államokban) terjedt el, hanem lényegében globálisan. Az ókori Kínábanpéldául női napistent tiszteltek Hszi-ho személyében, aki a „Tíz nap istenanyja” volt (a kínai mitológiában tíz, egymást váltó Nap létezett, amelyekből később egy hős kilencet lenyilazott, így maradt egyetlen Nap az égen), és akit később Ri Gong Tai Jang Csing Jun (Nap nagyapó) váltott fel. Nem messze Kínától, Japánban szintén női napistent imádtak, Amateraszu-ómikamit, akinek még a mai japán társadalomban is fennmaradt kulturális öröksége a császári család (nap)isteni eredete és a szigetország zászlajának központi motívuma. A hinduizmus alapművei, a Védák is isteni eredetűnek tekintik a Napot: istennői az Ādityák (akik későbbi elveszítették identitásukat és alakjuk beleolvadtSurya, a fő napisten, vagyis maga a Nap alakjába. A Nap istenkénti tisztelete a Föld átellenes oldalán, az amerikai kontinensen is elterjedt. Az azték mitológiában Tonatiuh volt a Nap istene, a mennyek ura, aki immár ötödik volt a sorban, miután négy korábbi napisten korszaka véget ért.

    Jézus Krisztus napisteni eredete

    Az Európában – saját kultúrkörünkben – leginkább elterjedt vallás a kereszténység volt, mindennapi életünket a keresztény kultúra és erkölcs befolyásolta és befolyásolja jobbára ma is. Az egyistenhívővallásnak látszólag vajmi kevés köze van a napkultuszhoz, néprajz- és történelemkutatók azonban aszimbólumrendszerek közös gyökereire mutattak rá, miszerint külsőségeiben Jézus Krisztuslényegében egy ókori napisten. A perzsa gyökerű Zarathustra vallásban jelent meg először egy, ahalálával az embereket halhatatlanná tevő istenség, akit véráldozattal ünnepeltek a hívők, akik főként pásztorok voltak. A véráldozatok betiltását követően a vallás többszörösen átalakult, hogy végül kialakuljon Mithra (görögösen Mithrász), a napisten kultusza. Mithrász a mítosz szerint a téli napfordulókor, az akkori római naptár szerint december 25-én, egy barlangban született. Bölcsőjét őt imádó pásztorok vették körül. Felnőve megölte a termékenységi jelképet jelentő bikát, és ezzel megváltotta az embereket, halhatatlansággal ajándékozva meg őket. Minthogy a bika ugyancsak ő volt más személyben, ezzel saját magát áldozta fel az emberekért. Híveinek beavatását szentelt vízzel való meghintéssel végezték. A hívek rendszeresen részt vettek egy kenyérből, vízből és borból álló vacsorán, amelyen Mithrász utolsó vacsorájára emlékeztek, amit követően istenük napkocsin az égbe szállt. Rómában kapta a Sol Invictus – Legyőzhetetlen Nap – nevet. A rengeteg egyezőség Krisztus bibliai történetével nem véletlen: Mithrász történetét az 1. században római katonák vitték Rómába, ahol az gyorsan és igen széles körben terjedt el a lakosság minden rétegében. Krisztus története tehát lényegében egy korábbi napisten mitológiai átalakulása lehet.

    Nem csak a Mithrász-Krisztus életút párhuzama utal a keresztény Megváltó napisteni eredetére, hanem a Virágvasárnap-történet is. A napistenek a nyári napfordulókor értek hatalmuk, dicsőségük csúcspontjára. Jézus is a jeruzsálemi bevonulás után ért működése csúcspontjára, ahová két szamáron vonult be. Krisztus korában a Nap a Rák csillagképben járt a nyári napforduló idején, azaz ekkor ért évi csúcspontjára, és a csillagkép neve sem rák, hanem Két Szamár volt (erre utal a Rák csillagkép két legfényesebb csillagának latin neve: Asellus Borealis és Asellus Australis, azaz Északi és Déli Szamárka is). Az tehát, hogy Jézus felült két szamárra és mindössze egy hét alatt beteljesítette élete fő művét, az annak csillagászati allegóriája, ahogy más vallásokban a napisten dicsősége csúcspontjára ér.

     

     

    Föld

     

     

    Föld a Naprendszernek a Naptól számított harmadik bolygója. A Föld a Naprendszer bolygóinak nagyság szerinti sorrendjében az ötödik. A Föld a legnagyobb átmérőjű, tömegű és sűrűségű Föld-típusú bolygó.[9]

    Több millió faj,[10] köztük az ember élőhelye is. A Föld a világegyetem egyetlen olyan bolygója, amelyről tudjuk, hogy életet hordoz. Jelenlegi ismereteink szerint 4,44[11]–4,54 milliárd éve alakult ki,[12][13][14][15] és a felszínén mintegy egy milliárd év múlva az élet is megjelent. Azóta a bioszféra jelentősen megváltoztatta az atmoszférát, és más, biotikus összetevőit. Ezzel lehetőség nyílt az aerob organizmusok osztódásos szaporodására, és létrejött az ózonréteg ami (a földi mágneses mezővel közösen) megszűri az ártalmas ultraibolya sugárzást.[16] ANaprendszer külső körülményei a várakozások szerint még mintegy 1,5 milliárd évig támogatják az élet jelenlétét, de ezután a mind fényesebbé váló Nap el fogja tüntetni a bioszférát.[17]

    földkéreg több különálló részre, tektonikai lemezekre töredezett, és ezek az elmúlt évmilliók során, és jelenleg is folyamatosan mozognak egymáshoz képest. A felszín nagyjából 71 százalékátsós vizű óceánok, a fennmaradó területet kontinensekés szigetek foglalják el. Nem tudunk más olyan bolygóról, aminek felszínén folyékony víz található, márpedig az a földi élet elengedhetetlen feltétele. AMarson valaha volt víz, de ma már csak legfeljebb nyomokban, jéggé fagyva fordulhat elő.[note 1][note 2] A Föld belseje aktív maradt. Részei a Goldschmidt-modell szerint:

    A Föld pályája a Nap körül (a méretek nem arányosak)

    A Föld több objektummal is kapcsolatban áll a világűrben. Ezek közé tartozik a Nap és a Hold. Jelenleg, amíg a Föld megkerüli a Napot, addig nagyjából 365,26-szor megfordul saját tengelye körül. Ez az időszak egysziderikus év, ami nagyjából 365,25 sziderikus napigtart.[note 3] A Föld tengelyének ferdesége a keringési síkra bocsátott merőlegeshez képest 23,4°.[18] Ennek következményei az évszakok. A Föld egyetlen ismertholdja, a 4,53 milliárd éve létrejött Hold vonzása alakította ki az árapályt, ami egyensúlyban tartja a tengelyferdeséget és valamelyest lassítja a bolygó forgását. Az óceánok kialakulásában egyes elméletek[19] szerint a bolygó történetének korai szakaszában nagy szerepet játszott egy üstököseső. Később a felszínt kisrészt kisbolygók becsapódásai alakították még, azonban ezek szerepe elhanyagolható a tektonika és a lepusztulás mellett.

    A bolygó egész felszínét belakó emberiség az ásványkincseket és az élőlényeket is hasznosítja. A nagyjából 200 szuverén állam kapcsolatainak fő formái a diplomácia, az utazás, a kereskedelem és a hadi tevékenységek. Az emberek sokféleképpen képzelték el a Föld jellegét és kialakulását az isteni megszemélyesítéstől a lapos Föld elméletén át napjaink integrált, tudományos világképéig. Ember először 1961-ben hagyta el bolygónkat, amikor Jurij Gagarin fölrepült a világűrbe.

     

    Kialakulása[]

    A Föld hét másik bolygótársával, a körülöttük keringő holdakkal, törpebolygókkal, kisbolygókkal, üstökösökkel és meteorokkal, valamint csillagunkkal, a Nappal együtt a Naprendszer tagja.Galaxisunk, a Tejútrendszer 200–400 milliárd csillagból áll. (Az átlagos Föld-Nap távolságotcsillagászati egységnek (CsE) nevezzük.)

    Az emberiség évezredek óta kutatja a Föld keletkezésének a titkát. Az ókori és középkori tudósokIstennek tulajdonították a Föld keletkezését. Az 1700-as években a természettudományok fejlődése rohamosan felgyorsult, ennek következtében egyre több elmélet született a Föld keletkezésére vonatkozólag. A mai modern teóriák a régebbi elméletek részleteit is tartalmazzák, miszerint: a Nap és bolygói por- és gázfelhőből alakultak ki. Ez az anyag kb. 4,6 milliárd éve kezdett összehúzódni, forgása felgyorsult. A középpontban kialakuló sűrű gázgömbből alakult a Nap, a kívül maradt felhőben pedig kristályos anyagok maradtak fenn és csapódtak ki a fokozatos lehűlés következtében. A Nap körüli felhő kristályos anyaga fokozatosan csomósodott előbb kisméretű égitestekké (planetezimálok), majd nagyobb tömegű égitestekké, végül a bolygókká.

    Felépítése[]

    Kezdetben, kb. 4,6 milliárd éve a Föld izzó, olvadt állapotban volt, a gravitáció hatására ekkor alakult ki a gömbhöz hasonló formája. Ebben az állapotban különböző rétegek alakultak ki, amelyek – aplanetáris differenciálódás során – sűrűségüknek megfelelően gömbhéjakba (geoszférákba) rendeződtek. E folyamat során alakult ki a földbelső jelenlegi tudásunk szerinti szerkezete: legkívül van a földkéreg, ezen belül található a földköpeny, és legbelül a külső és belső magból álló földmag. Később, amikor a kéreg megszilárdult és megindultak a vulkanikus folyamatok, a kéreg lemezekre töredezett (vagy sosem állt össze egységes szilárd kéreggé), majd kialakult egy újabb, gázokból álló gömbhéj, a légkör is, valamint a felszínen egy – bolygóméreteket tekintve vékony – részlegesvízborítás is kialakult.

    A Föld belső felépítéséről közvetlen bizonyítékokkal nem rendelkezünk, hiszen az eddigi legmélyebbre hatolt mélyfúrás, az oroszországi Kola-félszigeten fúrt szupermély fúrás is csak 12 261 méterre hatolt le a felszín alá [20], de még ez is bőven a kéregben maradt. A belső szerkezet megfigyelésére közvetett módszert, a földrengések megfigyelését használják a szakemberek. A Föld – vagy bármilyen bolygó – belsejében levő anyag fizikai tulajdonságainak változása a földrengéshullámok terjedési sebességének változását okozza, és ezen változások mérésével állapítható meg, hogy hány helyen változnak meg az anyag tulajdonságai, hány fizikailag elkülönülő belső rész mutatható ki.

    A Föld alakja[]

    A Föld alakját alapvetően két fizikai hatás határozza meg: az általános tömegvonzás, amellyel minden egyes tömegrészecske hat az összes többire, továbbá a Föld tengely körüli forgása. A Földhöz rögzített forgó koordináta-rendszerben a tömegvonzás és a forgó koordináta-rendszerből adódócentrifugális erő kölcsönhatására létrejövő, elméletileg forgási ellipszoid alakú folyadékszerű testhez a tényleges Föld-alak nagyon közel áll: e hidrosztatikus egyensúlyi alaktól csak helyenként tér el. A magashegységek és a mélytengeri árkok területén a fizikai földfelszín nem követi az elméleti felületet, mert itt más hatások is közrejátszanak a felszín alakításában. Az elméleti földalak, a geoid, azaz nehézségi gyorsulásnak a közepes tengerszinttel egybeeső potenciálfelülete ezeken a területen a kőzetfelszínt nem követi. Gyakorlati okokból éppen ezért általában egyszerűsített modellt használunk a Föld alakjaként. A geodéziában lapult forgási ellipszoiddal helyettesítjük a geoidot, de néha a még egyszerűbb gömbi közelítés is megfelelhet. Gömbi közelítésnél a közepes földsugárral (R) számolunk. Ez esetben is a modellnek ugyanolyan a forgása és akkora a tömege, mint a valódi Földnek. Ha a a Föld egyenlítői és b a sarkokon mért sugara, akkor f = (a-b)/a adja meg az ellipszoid lapultságát. Ekkor a gömbi és az ellipszoidi térfogatok egyenlőségének felírásával R³ = a²b egyenletre jutunk, amiből R meghatározható. A bonyolultabb modellek paramétereit a földközeli műholdak pályájának mérései alapján számítják.

    A Föld alakjának (a geoidnak) egyik elfogadott globális közelítése a WGS84 (World Geodetic System)elnevezésű geodéziai dátum, mely nem más, mint egy tömegközépponti elhelyezésű forgási ellipszoid, ahol a fél-nagytengely hossza 6 378 137 méter, fél-kistengely hossza 6 356 752,314 m. Az eltérés alig 0,33% a két tengely között, ezért lehet a gömb is jó közelítés. Amennyiben nem a globálisan jó illeszkedés a cél, hanem valamely kontinenst vagy még kisebb területet térképezünk, akkor más, helyileg jobban illeszkedő dátumot használunk. Magyarországon például az IUGG67ellipszoidból képzett HD72 dátum jobban írja le a felületet, ezért a magyar polgári térképezés többnyire ezt az alapfelületet használja.

    Belső szerkezete[]

    A Föld belső része öves felépítésű, az övek elhelyezkedése, kiterjedése, sőt esetenként mozgása is jól ismert ma már. Az övek összetételét illetően azonban még feltételezésekre, elméletekre kell hagyatkozni, mivel a legfelső 30–70 km-t leszámítva ez teljesen ismeretlen. A Föld öveinek kémiai összetételét vizsgáló elméleteknek magyarázatot kell adni az ismert jelenségekre, a Föld átlagsűrűségére, és meg kell felelnie a kozmológiai ismereteinknek is.

    A Föld szerkezetére vonatkozó legismertebb elmélet az úgynevezett Goldschmidt-féle vasmagosmodell. Ez kémiailag inhomogén öveket tételez fel, amelyben egyszerű ülepedés hatására a mélyebb rétegek a nagyobb fajsúlyú anyagokat tartalmazzák. Magyarázatot ad a felszíni kőzetek sűrűsége és a Föld átlagsűrűsége közötti eltérésre, valamint a mágneses mezőre.

    A Föld öves szerkezetének létrejöttét az Egyed László-féle vasmag nélküli modell kémiailag homogénként írja le, amelyben kizárólag a nyomás és a hőmérséklet változásai hozzák létre aszeizmológiailag mérhető övezethatárokat. A Föld átlagsűrűségét a magban található elfajult anyag növeli meg, a mágnesességet ugyanennek az elfajult anyagnak a mozgása hozza létre. A modell szerint a kéreg alatti konvekciós áramlatok olyan keveredést okoznak, ami meggátolja a fémes (nehéz) elemek leülepedését. Ez az elmélet vetette fel először a táguló Föld elképzelését.

    Földkéreg[]

    A Föld belső szerkezete a magtól a felső köpenyig

    földkéreg Földünk legkülső kőzetburka. Halmazállapota szilárd, magmásmetamorf vagy üledékes kőzetekből épül fel. Vastagsága átlagosan 30–40 km, bár rendkívül tág határok között változik: az óceánok alatt 6–7 km, a szárazföldek területén pedig 35 km, ám néhol eléri a 70 km-t is. Ezek alapján a kérget szokás óceáni és kontinentális kéregre osztani, amely felosztás nemcsak a földrajzi elhelyezkedés, hanem a kémiai összetétel okán is megalapozott. Az óceáni kéreg anyaga vékonyabb és szinte kizárólag bazaltból áll, átlagsűrűsége 3 g/cm³. A szárazföldi kéreg egy 15–20 km mélységben húzódó vonal mentén további két részre osztható: a felső, alumíniumban, szilíciumban és alkáli fémekben gazdag (tehát jobbára alumoszilikátokból és kvarcból álló) gránitos, valamint az alsó, több vasat és magnéziumot tartalmazó (tehát főleg ezek szilikátjaiból álló) bazaltos kéregre.

    A kéreg hőmérséklete a mélységgel változik, a felszínen a Nap melegítő hatására a hőmérséklet változó, ám néhány tucat méter után állandó lesz és onnan kilométerenként nagyjából 30 °C-kal növekszik a hőmérséklet, egészen a köpeny határáig, ahol kb. 400 °C-ot ér el. A kérget hordozó köpenyben végbemenő anyagáramlások, a konvekció miatt a kéreg nagyobb táblákra, ún. litoszféra-lemezekre töredezett, amelyek folyamatosan vándorolnak, mozognak.

    A vékony réteg térfogata a Föld össztérfogatának mindössze 1%-át teszi ki.

    A kéreg felszíne folyamatos megújuláson megy keresztül a vulkáni és eróziós folyamatok, illetve aszubdukció miatt, ezért a felszíni kőzetek átlagéletkora mindössze 2 milliárd év, míg a legrégebbi kéregmaradvány, a nyugat-ausztráliai Narryer Gneisz Formáció 3,9 milliárd éves.

    Földköpeny[]

    földköpeny a földmagot beburkoló vastag, mintegy 2900 km széles rendkívül magas viszkozitású, helyenként szilárd réteg. Alsó határa a külső földmaggal, felső határa pedig a földkéreggel kapcsolja össze. A kéreg és a köpeny határát az ún. Mohorovičić diszkontinuitás (vagy egyszerűsítve: Moho) jelöli ki, egy határ, amely alatt a földrengéshullámok sebessége ugrásszerűen megnövekszik. A földköpeny és a földmag határán (a köpeny legalsó rétegeként) egy vékony, úgy 200 kilométeres réteg is található, az ún. „D-réteg”. Az alsó köpeny és a földmag határát is egy jól elkülöníthető határréteg jelöli ki, ezt nevezik Gutenberg-Wiechert felületnek.

    Szeizmológiai mérések alapján a köpeny több jól elkülönülő részre osztható. A felső köpeny a kéreg alatti 7-35 kilométeres mélységtől 410 kilométerig terjed. A felső köpeny legfelső rétege szilárd, az alsó része képlékeny. Előbbit és a kérget együtt litoszférának nevezzük, utóbbit pedigasztenoszférának. A litoszféra alja kb. 100–150 km, az asztenoszféráé kb. 410 km. A képlékenységet a viszkozitással fejezzük ki. A földköpeny anyagának képlékenysége a mindennapi érzekelésünk szerint rendkívül viszonylagos, inkább mondanánk szilárdnak, a viszkozitási érték 1021és 1024 Pascal·másodperc (Pa·s), a mélységtől függően. (Összehasonlításul például a vízviszkozitása 10−3 Pa·s, míg a bitumené 107 Pa·s. A felső köpeny alatt az átmeneti réteg, vagymezoszféra található, amely 660 km mélységig tart. Ez a réteg nagyon bonyolult geológiailag (az áthaladó rengéshullámok sebessége térségenként változó) és markánsan elválasztja a felső köpenyt az alsó köpenytől. Az alsó köpeny pedig a 660-2900 kilométer közötti mélységet tölti ki. Ez utóbbiról viszonylag kevés ismeretünk van, azt viszont tudjuk, hogy szeizmológiailag lényegében homogén gömbhéj.

    A Föld tömegének 68%-a a földköpenyben található, miközben a térfogat 84%-át képviseli. Anyagát feltételezések szerint vasban és magnéziumban gazdag szilikátok alkotják.

    A köpeny övessége rugalmassági tulajdonságok változásaival, illetve a növekvő nyomás és hőmérséklet hatására az ásványok szerkezetében beinduló fázisátalakulásokkal magyarázható. A köpeny hőmérséklete és a benne uralkodó nyomás a mélységgel változik: a kéreg határánál 500 és 900 °C közötti, míg a maggal határos alsó részeken hozzávetőleg 4000 °C feletti hőmérséklet uralkodik. paradox módon bár a legtöbb kőzet olvadáspontja legfeljebb 1200 °C és a köpeny nagy részében ennél melegebb van, a köpeny fizikai tulajdonságait tekintve gyakorlatilag szilárdnak tekinthető. A köpeny alsó részében a nyomás közel 136 GPa. A felszínen tapasztalható vulkániműködés vagy lemeztektonika a köpenyben működő mechanizmusok hatására működő folyamat.

    Földmag[]

    A Föld legbelső szerkezeti egysége, a legbelső gömbhéj a földmag. Ahogy a magot körülvevő köpeny, így ez is két viszonylag önálló részre osztható: a külső magra és a belső magra. Szeizmikus vizsgálatok szerint a belső mag nagyjából 1220 km földsugárig, a külső mag pedig további közel 2300 kilométerig terjed. A külső mag folyadékszerűen viselkedik, a belső mag szilárd, mindkettő fő alkotóelemei nehézfémek elsősorban vas és kisebb mennyiségben nikkel. A szilárd belső mag létezését 1936-ban fedezte fel Inge Lehmann. A belső magban a legújabb kutatások szerint a vasnál nehezebb elemek is jelen vannak, a külső magban viszont a vasnál könnyebb elemek találhatók. A mag két részét tehát a kémiai összetétel és a halmazállapot (vagy az annak megfelelő viselkedés) különbözteti meg egymástól. A földmag határát az ún. Gutenberg-Wiechert-felület jelenti, egy szeizmológiai szempontból markáns határvonal, amelynél a földrengéshullámok sebessége jelentősen lecsökken. A külső és belső mag határát egy újabb felület, a Lehmann-felület jelöli ki, amelynél a földrengéshullámok sebessége ismét megnövekszik.

    A mag összetétele minden valószínűség szerint a Föld kialakulásakori olvadt állapotban végbementplanetáris differenciálódás, vagy más néven „vas katasztrófa” során alakult ki. Ennek során a nehezebb anyagok lesüllyedtek a bolygó középpontja felé, a könnyebb anyagok pedig felemelkedtek a felszín felé. Mivel a kéreg átlagos 2600–3000 kg/m³ sűrűsége kisebb, mint a globális átlagos 5500 kg/m³ sűrűségérték, a mag anyagának jóval sűrűbbnek kell lennie. Ebből feltételezhető, hogy a magban olyan anyagok fordulnak elő, mint az ozmium és irídium 23 g/cm³, platina 21,5 g/cm³, arany19 g/cm³, higany 13,6 g/cm³ stb. A keletkezéstörténethez kapcsolódó elméletek szerint a földmag egy bizonyos kondritos meteorit típussal van rokonságban. Ezek a kondritok főként vasból és nikkelből állnak és a Föld kialakulásakor a feltételezések szerint szerepet játszó bolygócsírák egy részének anyaga lehetett, amely az ütközések hőjétől való megolvadás közben került be bolygónk anyagai közé és differenciálódott a belső részekben.

    A külső mag folyékony anyagát a belső  áramlásra kényszeríti, amely hatás kiegészül még aCoriolis-erővel, ami erősíti az áramlást. Ez az áramlás bolygóméretű dinamóként működik és óriásimágneses mezőt gerjeszt. A szilárd belső mag nem vesz részt az erő gerjesztésében, vagy fenntartásában, viszont a stabilizálásában fő szerepet játszik. Szintén újkeletű tudományos eredménynek számít annak megfigyelése, hogy a belső mag kissé gyorsabban forog, mint a bolygó külsőbb részei. 2005-ben modellezték tudósok, hogy a belső mag évi 0,3-0,5 fokkal gyorsabban forog, mint a felszín forgása.

    A Föld belső héjszerkezete[21]
    Earth-crust-cutaway-hungary.svg

    A Föld metszeti ábrája. Nem méretarányos
    Mélység[22]
    km
    Réteg-összetevők Sűrűség
    g/cm³
    0–60 Litoszféra[note 4]
    0–35 ... Kéreg[note 5] 2,2–2,9
    35–60 ... Felső köpeny 3,4–4,4
    35–2890 Köpeny 3,4–5,6
    100–700 ... Asztenoszféra
    2890–5100 Külső mag 9,9–12,2
    5100–6378 Belső mag 12,8–13,1

    Tektonikus lemezek[]

    A Föld fő tektonikus lemezei[23]
    Tectonic plates (empty).svg
    A lemez neve Terület
    106 km²
    Afrikai lemez 78,0
    Antarktiszi lemez 60,9
    Ausztráliai lemez 47,2
    Eurázsiai lemez 67,8
    Észak-Amerikai lemez 75,9
    Dél-Amerikai lemez 43,6
    Csendes-óceáni lemez 103,3

    A földkérget is tartalmazó litoszféra a mérések szerint nem egy szilárd, homogén struktúra, hanem több, kisebb-nagyobb lemezre tagozódott, mozgó rendszer. A tektonikus lemezek egymáshoz képest is, és a Föld viszonyítási rendszereihez (tengely, egyenlítő) is mozognak. A mozgás hajtóerejét, a földköpeny anyagáramai adják. Maguk a lemezek kötődnek a köpeny konvekciós zónáihoz, a hőmérséklet-különbségek miatti áramlások, és a kéreglemezek felosztása igazodnak egymáshoz. A Föld fejlődéstörténete során a kontinensek elvándoroltak kialakulásuk helyéről, az óceáni kéreg pedig folyamatosan megújul és fenntartja a szén-dioxidkörforgását. A lemezek mozgása során háromféle tektonikus határvonal jöhet létre:

    • konvergens vagy destruktív szegély (vagy aktív szegély), amikor a két lemez egymás felé sodródik, és amellyel szubdukciós zóna (mikor az ütközéskor létrejövő alakváltozás hatására mindkét lemez alábukik), vagy kontinensütközés jön létre(amikor is az egyik lemez pereme felgyűrődik). A mélytengeri árkokat általában szubdukciós zónákkal azonosítják, míg a magashegységek (pl.Himalája) az ütközések termékei;
    • divergens vagy konstruktív szegély, amelynél a két lemez egymástól távolodik. Ilyenkor vulkanikus kúpok sora, hegységek jönnek létre a lemezeket szétfeszítő, feltörő lávából, ilyen például a Közép-atlanti hátság és az afrikai Nagy-hasadékvölgy;
    • súrlódó vagy konzervatív szegély, amelyeknél a lemezszegélyek egymással párhuzamosan, de ellentétes irányban mozognak. Az egymásba ékelődő szegély-egyenetlenségek hatására folyamatosan feszültségek halmozódnak, szakaszos, hirtelen gyors mozgásokat okozva. Ilyen akaliforniai Szent András törésvonal.

    A kőzetlemezek határvonalát gyakori földrengés, és vulkanikus tevékenység jellemzi, valamint a fenti felszíni jelenségek figyelhetők meg.

    A földfelszín[]

    A Föld felszíne rendkívül változatos domborzati formákat hordoz. A felszín közel 71 százalékát víz borítja, a további 29%-ot szárazföldnek nevezzük. A kéreg víz alatti teteje hasonlóan tagolt, mint a szárazföldek felszíne: hegyek, hegyláncok, árkok, síkságok váltogatják egymást mindkettőnél. Bolygónk felszíne a vulkáni tevékenység, a lemeztektonika és az erózió miatt folyamatosan átalakul, igaz ebben a folyamatban több ezer, vagy akár több millió év alatt mutatkoznak meg a változások.

    Óceánok[]

    A Föld egyik legfontosabb jellemvonása a felszínén folyékony formában jelen levő nagy mennyiségűvíz, ami miatt bolygónkat – elsősorban az űrkorszak idejében készült űrfelvételek alapján – „Kék Bolygóként” is szokás emlegetni. Ezen vizeket összefoglalóan hidroszférának nevezzük, amelyek összességében a földfelszín nagyobb részét – összesen 70,8%-át – borítják. A felszíni vizek többféle formában vannak jelen, kisebb-nagyobb méretű folyóvizek (erek, patakok, folyók, folyamok) és különböző méretű állóvizek (tavak, tengerek, óceánok) formájában. Ezek a vizek két fő csoportra oszthatók: sós vizek és édesvizek. Ezek közül az előbbiek vannak túlsúlyban, a hidroszféra 97,5%-a sósvíz, míg a maradék 2,5% édesvíz, amelynek viszont 68,7%-a[24] jég formájában található meg a sarki jégsapkákban.

    Az egész hidroszféra legmeghatározóbb felszíni formái az óceánok. A három, meghatározó méretű világóceán:

    Egyes földrajzi osztályozások a Jeges-tengert is óceánnak tartják (Északi-óceán), valamint az Antarktiszt körülvevő vizeket, a 60. déli szélességtől délre fekvő, egybefüggő tengert (az Atlanti-, Csendes- és Indiai-óceán déli területeit, Déli-óceán néven) úgyszintén.

    Az óceánok 1,37×109 km³, azaz 1,37 milliárd km³ térfogatot,[25], a Föld össztérfogatának – ~1083 milliárd km³ – mindössze 800-ad részét teszik ki. Ha az óceánok tömegét hasnlítjuk a bolygó össztömegéhez, még kisebb értéket, mindössze 4400-ad földtömegnyit – hozzávetőleg a bolygó tömegének 0,25‰-ét – kapunk (tekintve, hogy a bolygó anyagának átlagsűrűsége – 5,5 g/cm³ – sokkal magasabb, mint az egységnyi sűrűségű vízé). Ez a bolygóméretekben elenyésző mennyiségű anyag mégis 2,7 km mély vízréteget vonna a bolygó felszínére, ha az sima felületű gömb lenne. A földfelszín egyenetlensége miatt a világtengerek mélysége rendkívül széles határok között változik. Az óceánok legmélyebb pontja a Csendes-óceánon, a Mariana-árokban fekszik, 11 022 méteren, átlagos mélysége 3711 méter.[26]

    A tengervíz átlagos sótartalma 35‰.[27] Az óceánok jelentős hatást gyakorolnak a Föld klímájára: hatalmas hőtárolóként és a tengeri áramlatok révén hő szállító közegként működnek. A tengervíz hőtároló és hőelosztó tulajdonságainak vannak állandó és véletlenszerű hatásai. Előbbire példa a Golf-áramlat, amely a trópusok melegét szállítja az Atlanti-óceánon a magasabb északi szélességekre, így pl. Európa nyugati részére, utóbbira pedig az El Niño és La Niña jelenség, amely időszakosan alakul ki és időszakosan okoz szélsőséges időjárási jelenségeket.

    Az óceánok az élet bölcsői és hatalmas tárházai. Biológiai kutatások szerint a földi élet a tengervizekben alakult ki és csak később hódította meg a szárazföldet. A ma létező fajokból több százezer a tengerek lakója.

    Kontinensek[]

    A földfelszín 29,2%-a szárazföld, amely kontinensekből és szigetekből tevődik össze. A kéreg kontinentális része vastagabb az óceánfenéki kéregnél és rendkívül tagolt. A felszín legmagasabb pontja a Mount Everest, 8848 méteres magasságával, míg a legalacsonyabb pont - 418 méteren fekszik a Jordánia és Izrael között fekvő Holt-tenger-nél. A szárazföldek átlagos szintje 840 m atengerszint[28] felett. A földfelszín többféle anyagból épül fel, főként kőzetekből és a talajból. A kőzetek elsősorban vulkanikus eredetűek (gránit és andezit), olyan kisebb sűrűségű anyagból épülnek fel, amelyet korábbi korok vulkánjai hoztak felszínre kéreg alól, ezzel folyamatosan megújítva a földfelszínt. Kisebb mennyiségben nagyobb sűrűségű kőzet, bazalt is található a felszínt felépítő kőzetek között. Egy másik fő kőzettípus az üledékes kőzet, valamilyen egykori tengerfenéken rétegesen lerakódott és kővé tömörödött anyag, amely a földfelszín 75%-át beborítja, ám mennyiségét tekintve mindössze 5%-ot tesz ki a kéreg felső 10 kilométer vastag rétegében.[29] A harmadik meghatározó kőzettípus a metamorf kőzetek családja. Ezen kőzettípus korábban már létezett más kőzetekből jön létre valamilyen magas hőfokon és/vagy magas nyomáson végbemenő geológiai folyamat során. A földfelszín többi részén finom szemcsézetűbb anyag található. A talaj az alapkőzetfizikai, majd kémiai málásával jött létre, majd egy biológiai folyamat során szerves anyagokkal telítődve nyerte el jelenlegi formáját. Az emberi élet szempontjából a talaj a legjelentősebb a felszínt felépítő anyagokból, hisz ez alkalmas egyedül mezőgazdasági művelére, élelmiszertermelésre.

    Xx-terkep.png

    A földrajztudomány a földfelszínt nagyobb egységekre bontja, ezek a kontinensek:

    Az egyes földrészeken azonban ettől eltérő beosztásokat is tanítanak a földrajzórákon. Létezik 4–5–6–7 kontinenses felosztás is. Ezekben Európát és Ázsiát külön, vagy Eurázsiaként összevontan, sőt Afrikával Afro-Eurázsiaként is összevonva, valamint Amerikát Észak- és Dél Amerikaként külön és összevontan tekintik egy-egy kontinensnek Antarktisz és Ausztrália mellett.

    • 4 kontinenses felosztás: Amerika – Afro-Eurázsia – Ausztrália (és Óceánia) – Antarktisz
    • 5 kontinenses felosztás: Amerika – Afrika – Eurázsia – Ausztrália (és Óceánia) – Antarktisz
    • 6 kontinenses felosztás: Amerika – Afrika – Európa – Ázsia – Ausztrália (és Óceánia) – Antarktisz
    • 6 kontinenses felosztás (másik változat): Észak-Amerika – Dél-Amerika – Afrika – Eurázsia – Ausztrália (és Óceánia) – Antarktisz
    • 7 kontinenses felosztás: Észak-Amerika – Dél-Amerika – Afrika – Európa – Ázsia – Ausztrália (és Óceánia) – Antarktisz
    • 7 kontinenses felosztás (másik változat):Amerika,Afrika,Ázsia,Európa,Ausztrália,Óceánia,Antarktisz
    • 8 kontinenses felosztás:Észak-Amerika,Dél-Amerika,Afrika,Ázsia,Európa,Ausztrália,Óceánia,Antarktisz
    • 8 kontinenses felosztás (másik változat):Amerika,Afrika,Ázsia,Európa,Ausztrália,Óceánia,Antarktisz,Közép - és Dél-Atlanti-óceáni térség
    • 9 kontinenses felosztás:Észak-Amerika,Dél-Amerika,Afrika,Ázsia,Európa,Ausztrália,Óceánia,Antarktisz,Közép - és Dél-Atlanti-óceáni térség

    A kontinensek geológiai időmértékkel mérve nem állandó képződmények. A tektonikai lemezeket érintő kutatások kiderítették, hogy a ma ismert kontinensek egykor egyetlen szuperkontinenst alkották, a Pangeát. Ez a szuperkontinens darabolódott fel, először Laurázsiát és Gondwanátlétrehozva, majd a két nagy egység továbbdarabolódásával jöhettek létre a mai kontinensek. A jövőben ez a folyamat tovább folytatódik, így például Afrika és Európa (Eurázsia) eggyé válhat – eltüntetve a Földközi-tengert –, de Afrika keleti része leválhat a fekete kontinensről és a Nagy-hasadékvölgy helyén tenger fog hullámzani.

    A légkör[]

    A légkör az űrből nézve: egy fénylő kék fénysáv bolygónk körül

    Föld légköre a bolygó felszínét körülölelő gázburok, amelyet a gravitáció tart a helyén. A gázburok össztömege 5,1480×1018 kg, ebből adódóan a tengerszinten mért légnyomás 101,3 kPa(= 1 atmoszféra (atm) = 760 torricelli (torr) = 736,6 higanymilliméter (Hgmm)), amely a tengerszint feletti magasság növekedésével – a légkör ritkultával – csökken. Emiatt a folyamatos ritkulás miatt a légkör és a világűr között nincs éles határ. Az űr határát, az ún. Kármán-vonal jelenti, egy 100 kilométer magas képzeletbeli vonal, azonban itt még olyan sűrű a légkör, hogy az ott közlekedő űreszközök maximum 1-2 napig képesek stabilan pályán maradni, utána a légellenállás annyira lelassítja őket, hogy visszazuhannak a földfelszínre.

    A légkör nem mozdulatlan légtömeg, a napfény hője, valamint a Coriolis-erő hatására állandó cirkulációban van. A hétköznapi megfigyelés szintjén ez különböző szelek, szélrendszerek formájában jelenik meg.

    A légkört alkotó gázokat gyűjtőnéven levegőnek nevezzük. A levegő 78,08% nitrogénből, 20,95%oxigénből, 0,93% argonból, 0,038% szén-dioxidból, továbbá vízpárából és nyomokban hidrogénből,héliumból és más nemesgázokból tevődik össze. A gázokon és a vízpárán kívül más anyagok is találhatóak a légkörben, amelyek egy része természetes, más része mesterséges, az ember tevékenységei által a levegőbe juttatott szennyezőanyag. A természetes légköri anyagok a por, apollenek, vulkáni por és hamu és a meteoroidok. A mesterséges anyagok a gyárak és a közlekedés által a légkörbe bocsátott por, klórfluorhiganykén stb.

    Az atmoszférát sávokra osztjuk a levegő fizikai tulajdonságai alapján:

    • Troposzféra: a földfelszíntől az egyenlítőnél 17, a sarkok felett azonban csak 7 kilométer magasságig húzódó légréteg, amelyet a földfelszín kisugárzott hője melegít fel és amelyben a magassággal csökken hőmérséklet. Ez a réteg teszi ki a teljes légkör tömegének 80%-át, itt folyik a légiközlekedés. A réteg felső határát az ún. tropopauza jelenti.
    • Sztratoszféra: a tropopauza és a közelítőleg 50-55 kilométer magasságban húzódó sztratopauzaközötti réteg. A tropopauza feletti légtérben a levegő teljesen száraz, sem vízpára, sem jégkristályok nincsenek már és a hőmérséklet a magasság növekedésével enyhén emelkedik. A légköri nyomás a felszíni nyomás ezredrészéig csökken ebben a rétegben.
    • Mezoszféra: a sztratopauza és 80-85 kilométer magasság közötti, a mezopauzáig terjedő réteg. A sztratorszféra feletti rétegben a magasság/hőmérséklet összefüggés ismét megfordul, itt a hőmérséklet újra csökken a magasság növekedésével. A réteg tetején mérhető a legalacsonyabb hőmérséklet a bolygón, a mezopauzában átlagosan -100 °C van. A Földdel találkozó kozmikus porszemcsék ebben a rétegben elégve okozzák a hullócsillag jelenséget.A troposzféra és a sztratoszféra és a mezoszféra együtt alkotja a homoszférát.
    • Termoszféra: a mezoszféra feletti, a naptevékenység alakulásától függően 350-800 kilométer magassági terjedő légréteg, amelyben újra megfordul a hőmérséklet és a magasság közötti összefüggés: a magassággal a hőmérséklet növekszik egészen a termopauzáig, amelytől felfelé viszont már állandó marad. A hőmérséklet ebben a magasságban elérheti az 1500 °C-ot (bár a gázmolekulák itt már olyan ritkán helyezkednek el egymáshoz képest, hogy a hétköznapi értelemben vett hőmérséklet itt nem értelmezhető. Az űrhajózásban ez a leginkább használt zóna, itt húzódik az ún. alacsony Föld körüli pálya, itt kering a Nemzetközi Űrállomás, vagy az űrrepülőgépek, a műholdak nagy része.
    • Exoszféra: a termoszféra feletti, főként hidrogénből és héliumból álló, a napszél által alakított legfelső légköri réteg. Az ebben a rétegben levő gáz már nem hasonlít a köznapi értelemben vett levegőre, vagy más gázra, a molekulák több kilométert is sodródhatnak, mire egy másikkal ütköznének. Ezek a részecskék erősen ki vannak téve a napszél hatásának, illetve a mágneses tér erővonalainak terelő hatásainak. Ebben a rétegben már szinte kizárólag csak hidrogén és hélium található. Az exoszféra és a termoszféra együtt alkotja a heteroszférát.

    Az öt fő réteg mellett egyéb tulajdonságok alapján más rétegeket is megkülönböztetünk. Ilyen például az ózonréteg, amely a sztratoszféra 15–35 km-es sávjában található, ahol az ózonkoncentráció sokkal magasabb, mint a légkör többi részében. A réteg modern kori ritkulása, az ún. ózonlyuk a felszínre jutó káros sugárzás növekedésével, az élőlényekre ható káros hatásokkal jár. Másik ilyen réteg az ionoszféra, egy 50 és 1000 kilométer között elhelyezkedő, a nap sugárzása által ionizált gázokból álló képződmény, amely a magnetoszféra belső határát is kijelöli egyben.

    Mágneses mező[]

    A Föld mágneses mezejének grafikus ábrázolása

    A Föld mágneses mezeje egy mágneses dipólus, hasonló, mint egy rúdmágnes által generáltmágneses mező. A rendszer két pólusa közelítőleg megegyezik a földrajzi északi és déli pólussal(érdekesség, hogy a mágneses mező déli pólusa azÉszaki mágneses pólussal és a mező északi pólusa a Déli mágneses pólussal egyezik meg), a két mágneses sarkot összekötő képzeletbeli tengely 11,3°-kal tér el bolygónk forgástengelyétől. A mágneses sarkok nem stabilak, átlagosan 15 kilométert vándorolnak arrébb a földfelszínhez viszonyítva minden évben (a két mágneses pólus egymástól független irányokba vándorol és nem pontosan a földgömb átellenes pontjain helyezkednek el). A mező instabilitásának másik jele a nagyjából 200 000[30] évente bekövetkező pólusváltás. Hawaii vulkánjainak megfigyeléséből származó, a kőzetekben megőrződött mágnesesség mérésein alapuló feltételezések szerint időről időre megváltozik a mágneses mező polaritása, a legutóbbi ilyen esemény 780 000 évvel ezelőtt következett be. A mágneses mező eredete feltételezhetően a bolygómagban létrejött dinamó-hatás, amelyben a mag olvadékának áramlása hatására létrejövő áramlatok elektromos áramot és mágneses mezőt indukálnak.

    A földmagban indukálódott mágneses mező rendkívül kiterjedt, a felszíntől több tízezer kilométerre elnyúló mágneses buborékot, az ún. magnetoszférát hozza létre bolygónk körül. A magnetoszféra alakja nem gömbszimmetrikus, hanem üstökösre hasonlít, mivel a napszél nyomása eltorzítja (a Föld nappali oldalán összenyomja, a felszínhez közelebbre tolja a magnetoszféra határát, míg az éjszakai oldalon csóvaként elnyújtja).

    A magnetoszféra védőburkot von a Föld köré, a sugárzások nagy részének kiszűrésével lehetővé tette az élet kialakulását és védelmezi azt a kezdetek óta. A megnetoszféra jelenlétére két kísérleti bizonyíték létezik. Az egyik a sarki fény, a világűrben a napszéllel áramló részecskék, légköri gázok ionizálása közben felszabaduló fotonok okozta fényjelenség, a mező erővonalai mentén. A másik aziránytű, egy eszköz, amelyben a tű a mágneses észak-déli irány felé áll be.

    Helye és mozgása a Naprendszerben[]

    A Föld a Naptól számítva a harmadik bolygó. Központi csillagunk körüli pályája közel kör alakú, átlagos naptávolsága – amelyet Csillagászati Egység (CsE) jelöléssel a Naprendszerbeli távolságok mérőszámaként is szokás alkalmazni – 150 millió kilométer. Az ellipszispálya napközelpontja147 098 074, naptávolponja 152 097 701 kilométeren található. A Föld a Merkúrral, a Vénusszal és aMarssal együtt a Föld-típusú bolygók vagy más néven kőzetbolygók családjába tartozik, amelyek aBelső Naprendszer meghatározó objektumai. A Naprendszerbeli elhelyezkedése az ún. lakható övezetbe esik, abba a zónába, ahol a hőmérséklet elég meleg az élet alapkövét jelentő víz folyékony halmazállapotban tartására.

    2011-ben a NASA Wide-field Infrared Survey Explorer (WISE) műholdjának adatai segítségével egy kb. 300 méter átmérőjű Trójai-típusú kísérőt azonosítottak 2010 TK7 néven az egyik Lagrange-pontban.[31]

    Keringése[]

    Bolygónk a Nap körül kering, egy keringést 365,242199 nap alatt tesz meg. A keringés iránya nyugatról kelet felé mutat (a Nap szemszögéből nézve), egy a Nap és a Föld északi pólusa felett elhelyezkedő megfigyelő az óramutató járásával ellentétes keringést figyelhetne meg. A Föld pályamenti sebessége 30 km/s, amellyel a csillagos égbolthoz képest közelítőleg 1°-ot halad előre naponta a bolygó (a csillagok egy év alatt egy teljes kört írnak le látszólagos égi pályájukon a földi megfigyelő számára, emiatt az égbolt egy adott pontja minden nap kb. 4 perccel korábban kel fel ahorizonton). A csillagászati és matematikai modellek nem egységesek a Föld keringésének stabilitását illetően. A legtöbb modell hosszú időn át – százmillió, vagy évmilliárdos skálán – stabil pályát vetít előre, egyes modellek szerint azonban megjósolhatatlanok a pályaváltozások.

    Tengelyferdesége[]

    Földünk forgástengelye az ekliptika síkjával 23,44°-ot zár be, amely valószínűleg egy korábbi bolygóközi ütközés eredménye. A tengelyferdeség és a Nap körüli keringés közös hatása azévszakok kialakulása a felszínen. A tengelyferdeség miatt a földfelszín egy adott pontjának megvilágítottsága állandóan változik az év során, ez pedig periodikus klímaváltozásokat okoz. Az északi féltekén nyár van, amikor az Északi-sarkpont a Nap felé fordul (ugyanekkor tél van a déli féltekén) és tél van, amikor a Déli pólus fordul a Nap felé (és ugyanekkor nyár van a déli félgömbön). Nyáron a nappalok hosszabbak és a hosszabb besugárzás miatt magasabb hőmérséklet alakul ki, míg télen rövidebb ideig tart a nappal és alacsonyabb a hőmérséklet is. A hatás az egyenlítőhözközelebb sokkal kevésbé érezhető, a földrajzi szélesség emelkedésével egyre markánsabb. Az északi és déli sarkkörön túl pedig speciális megvilágítottsági viszonyok alakulnak ki: vannak időszakok, amikor több mint 24 órán át tartó éjszaka, vagy ugyanígy több mint 24 órán át tartó nappal van.

    A bolygó keringésének négy kitüntetett pályapontját tartja számon a csillagászat, ezek egyben az évszakok határát kijelölő dátumok is. Ilyen a két napforduló (a téli napforduló az északi féltekéndecember 21-én, a nyári napforduló pedig június 21-én), amikor a Föld forgástengelye legnagyobb szögben hajlik el a napsugaraktól. Ilyenkor vannak a leghosszabb és legrövidebb nappalok az egyes féltekéken. Illetve ilyenek a napéjegyenlőségek, amikor a Nap pontosan 90°-ban delel az egyenlítő fölött (a tavaszi napéjegyenlőség napja az északi féltekén március 21., az őszi napéjegyenlőségé pedig szeptember 22.).

    Tengelyforgása[]

    A Föld a saját tengelye körül forgó mozgást végez. A forgás nyugatról kelet felé történik (ha az északi pólus felől tekintenénk a bolygóra, az óra járásával ellentétes irányú forgását tapasztalnánk). Bolygónk egy fordulata a viszonyítási ponthoz képest értelmezendő. 24 óra egy szoláris nap, amely egy időegység, a nap hossza is. Az időmérésre használt nap hossza – 86 400 másodperc –, a Naphoz mért forgási idő, azaz központi csillagunk két egymást követő delelése között eltelt átlagos idő. A csillagos égbolthoz képest azonban szoláris időben nem 24 órás napot mérhetünk, hanem csak 23 óra 56 perc 4,1 másodperc hosszút. Ez az időtartam egy tetszőleges csillag (kivéve a Nap) két delelése között eltelt idő, a sziderikus nap. A két időtartam közötti közel négy perc különbséget a Föld Nap körüli pályáján való egy nap alatti elmozdulása okozza. Létezik még egy harmadik időtartam is a nap hosszára vonatkoztatva, a csillagnap: ez a sziderikus nap hosszához képest mindössze 8,4 milliszekundummal rövidebb, és a különbség a Föld tengelyének precessziója miatti elmozdulásból ered.

    A forgás eredete a Naprendszer kialakulásának idejéből származtatható: a 4,6 milliárd évvel ezelőtt született Naprendszer a központi protocsillag körül forgó anyagból álló rendszer volt és ez az egykori forgás konzerválódott az ebből az anyagból létrejött objektumokban. A rendszerben jelen lévőgravitációs hatások azonban folyamatosan változtatnak az égitestek forgásán. A nap hossza a Hold által keltett árapály jelenség miatt folyamatosan növekszik, mivel az a Föld forgását folyamatosan lassítja. A modern időmérés alapjának számító másodperc korábban a Föld keringéséből származtatott mértékegység volt, azonban mára az egykor rögzített időtartam és a tényleges, keringésből mért időtartam eltér. Az eltérés nagyon csekély. Hogy az időszámítás ne boruljon fel, időnként szükség szerint egy-egy negyedév végén a Nemzetközi Távközlési Unió szökőmásodpercekbeiktatásával igazítja az időszámítást a Föld valós mozgásához.

    A Föld tengely körüli forgása nyilvánvaló a Nap és a Hold égi mozgásának megfigyeléséből. A korai megfigyelők ezt a mozgást az égitestek Föld körüli keringésével magyarázták – a geocentrikus világkép alapvetéseként –, azonban az elméletben is meghaladott „mozdulatlan Föld” koncepcióját a XIX. század fizikai kutatásai a Coriolis-erő hatásáinak bemutatásával kísérleti bizonyítékkal is cáfolták. A Coriolis-erő bemutatására szolgáló kísérletek bolygónk tengely körüli forgását igazolják.

    Élet[]

    A Földön úgy 3,5 milliárd éve indult el egy folyamat, amelyet élet néven foglalunk össze, és amely mai ismereteink szerint egyedülálló a Világegyetemben.

    A Hold[]

    Bolygónknak egy természetes kísérője van, a Hold. Földünk egyetlen kísérője egy 4,5 milliárd évvel ezelőtt, a korai Föld és egy nagyjából Mars méretű bolygócsíra ütközése nyomán keletkezett égitest, amely bolygónk körül kering. Méretét tekintve jelentékeny – átmérője a Földének ¼-ét teszi ki –, abelső naprendszerben egyedülállóan nagy holdról van szó, naprendszerbeli összehasonlításban is az ötödik legnagyobbról beszélhetünk. Eredete sokáig tudományos viták tárgya volt (távolról érkezett, befogott kisbolygónak, a Föld testéből a kezdeti idők gyors tengely körüli forgása miatt kiszakadt égitestnek is hitték), a keletkezéstörténet bizonyítékait az Apollo-program űrhajósai hozták haza, így csak az 1970-es évekre lett bizonyosság, hogy egy becsapódás nyomán bolygónk testéből kiszakadt anyagból állt össze.

    A Föld-Hold rendszer méretarányos modellje

    A Földhöz közel, átlagosan 384 000 kilométerre – nagyjából 30 Föld-átmérőnyire – kering a Föld-Hold rendszernek a Föld felszíne alatt, bolygónk belsejében levő tömegközéppontja körül. Keringése ún. kötött keringés, azaz mindig ugyanazt az oldalát mutatja felénk, csillagászati megfogalmazás szerint a tengelyforgási és Föld körüli keringési ideje megegyezik. A sziderikus keringési ideje, azaz a Föld körüli (a csillagos háttérhez viszonyított) egy fordulat megtételéhez szükséges idő 27,3 nap, a teljes fényfázis változás ideje, azaz a szinódikus keringése 29,5 nap. Keringési síkja bár nem egyezik meg vele, de nagyon közelít az ekliptikához. A kis eltérés egyben azt is jelenti, hogy nem minden újholdkor kerül a Nap és a Föld közé – nem minden hónapban van napfogyatkozás –, csak ritkábban, nagyjából félévente, igaz akkor is mindig a földfelszín más és más pontjain.

    A Hold fázisai és librációja a Földről nézve

    A Holdnak a Földre gyakorolt hatásai erőteljesek. Az égitest Föld körüli keringésének tudják be a tudósok ma az élet sikerét is: kísérőnk stabilizálta a Föld tengelyferdeségét (nem engedte billegni a forgástengelyét), így az éghajlat viszonylag állandó maradhatott akár több százmillió éves skálán, így az élőlényeknek nem kellett extrém környezeti változásokhoz alkalmazkodni. A Hold mindennapokban jelentkező hatása az árapályjelenség. Az égitest tömegvonzása hatására a földfelszín Hold felé mutató része megemelkedik (különösen a tengervíz, mivel a folyadékok alakváltoztatási képessége jobb), az előtte és utána 90°-kal fekvő terület pedig lesüllyed, amely a Föld forgásának sebességével mozgó hullámot alkot. Az árapály jelenség legfőbb hatása a Földre bolygónk tengely körüli forgásának – azaz a nap hosszának – lassú növekedése. Modellszámítások szerint nagyjából 400 millió évvel ezelőtt egy év hozzávetőleg 400 napig tartott, mivel a nap hossza csak 21,8 óra volt.

    A Hold megfigyelése az idők kezdete óta folyó szabadszemes megfigyelésekkel kezdődött, majd atávcsöves észlelésekkel folytatódott, hogy napjainkban űrszondás kutatásokban, sőt az Apollo–program űrhajósokkal végzett expedícióiban csúcsosodik ki. A Hold megismerése kulcsfontosságú a Föld korai történetének modellezése szempontjából, mivel bolygónk felszíne az aktív geológiai folyamatok miatt állandóan változik, megújul, így a nagyjából 1 milliárd évvel ezelőtti időszak előttről nem maradt fenn megismerhető maradvány. Mivel azonban ma már tudjuk, hogy a Föld-Hold rendszer 4,5 milliárd éve együtt fejlődik, azonos kozmikus hatásoknak volt kitéve, a holdfelszínen megörződött geológiai történelem a Föld őstörténetét is bemutatja.

    A Hold után minden más bolygónak a körülötte keringő kísérőbolygójára holdként hivatkoznak, ahogy a Föld körüli pályára állított mesterséges objektumokra is: ezek a műholdak.

    A Föld szférái


     
     
    A Föld belső szerkezete

    Föld szférái, azaz a Föld magja, illetve a légkör és avilágűr határa között lévő tér felosztása sávokra egy képzeletbeli vonal mentén.

    A geofizikusok úgy vélik, hogy a Föld belső szerkezete már bolygónk életének korai szakaszában kialakult, de azt pontosabban megismerni csak a XX. században kezdtük. A nehézségi erő, a földmágnesesség és aföldrengéshullámok vizsgálata jelentősen bővítette ismereteinket. Ezekből tudjuk, hogy a Föld jó közelítésselgömbhéjas felépítésű. Ezek a héjak az ún. geoszférák – a név a görög gea (föld), és szféra (burok) szavakból származik. A Föld gömbhéjait két nagy csoportra – külső és belső szférákra – osztjuk aszerint, hogy mozgásaikat döntően a napsugárzás vagy a Föld belső melege okozza-e. A szomszédos szférák anyagi összetétele többnyire jelentősen különbözik.

    Külső szférák[szerkesztés]

    Legkor.png

    Belső szférák[szerkesztés]

    • földkéreg a legkülső, szilárd halmazállapotú gömbhéj, bolygónk tömegének mindössze 1%-a. A szárazföldek alatt 30–70 km vastag – felül gránitos, alatta bazaltos. Az óceánok alatt csak 5–8 km-es bazaltréteg van.
      • Litoszféra a földkéreg és a földköpeny vele együtt mozgó, felső részének összefoglaló neve. Alsó határa kb. 100–150 km mélyen van.
    • köpenyt felső köpenyre, asztenoszférára (410 km-ig) átmeneti zónára (670–680 km-ig) és alsó köpenyre osztjuk. Alsó határa kb. 2891 km mélyen van. Lefelé haladva fémtartalma növekszik, és a felső részén szilikátokban gazdag.
    • földmagot időnként vas-nikkel, avagy NiFe-magnak is nevezik, mivel a vasmagos modell szerint főleg a vas és a nikkel szulfidjaiból áll. Két gömbhéja a:
      • külső mag vagy maghéj folyékony halmazállapotúnak tekinthető, mivel benne az S (transzverzális) hullámok nem folytatódnak. Anyaga a vasmagos modell szerint fémekből, elsősorban nikkelből és vasból áll, a vasmag nélküli modellben nem fémes, elfajult anyag, sűrűsége 9–11 g/cm³.
      • belső mag szilárd halmazállapotú, de közel jár az olvadásponthoz, nagy viszkozitású, nagy sűrűségű (13–17 g/cm³) terület.

    A külső belső mag között kb. 5100 km-es mélységben húzódik a Lehmann-féle felület vagy öv. A Föld középpontjában a nyomás kb. 3,6-3,7 Mbar, a hőmérséklet pedig 3000–4000 °C. A Föld belseje felé haladva a hőmérséklet a radioaktív anyagok (urán, tórium, kálium) bomlása miatt egyre nő, ezt geotermikus grádiensnek nevezzük, melynek átlagértéke 33 m/1°C = 100 m/3°C.

     

    Földi mágneses mező

     


     
     

    földi mágneses mező (és a felszíni mágneses mező) egy mágneses dipólus, melynek déli mágneses pólusa a földrajzi Északi-sark közelében, az északi mágneses pólusa a földrajzi Déli-sarkközelében található. A mágneses pólusokat összekötő képzeletbeli tengely nagyjából 11,3°-kal tér el a bolygó forgástengelyétől. A mező több tízezer km-re terjed ki a világűrbe, ezt magnetoszféránaknevezzük.

    mágneses mező valószínű oka a Föld belső szerkezetében működő dinamó-mechanizmus. A dinamó-mechanizmus lényege, hogy a Földbelsejében lévő olvadt vasból és nikkelből álló külső mag áramlásai révén örvényáramok keletkeznek, az örvényáramok pedig kiterjedt mágneses teret gerjesztenek. A mágneses tér irányultsága a mágneses déltől a mágneses észak felé mutat, ez lényegében azonos a mágneses tér ún. áramlási irányával.

    Mágneses sarkok[]

    mágneses sarkok helyzete nem állandó, évente átlagosan 15 km-nyit mozdulnak el, véletlenszerűnek tűnő irányba és mértékben, ezt régebbi térkép használatakor figyelembe kell venni. A földi mező változtatja méretét és helyzetét. A két pólus egymástól függetlenül vándorol és nem feltétlenül a földgömb két ellentétes pontján találhatók. 2006-ban a déli pólus távolabb volt a Déli-sarktól, mint az északi pólus az Északi-sarktól.

    A mágneses sarkok helyzete:

    Pólus 2001 2004 (becsült) 2005 (becsült)
    Északi mágneses sark 81,3°É, 110,8°Ny 82,3°É, 113,4°Ny 82,7°É, 114,4°Ny
    Déli mágneses sark 64,6°D, 138,5°K 63,5°D, 138,0°K  

    Mérése[]

    A mágneses tér létezésére biztonsággal utal az a tény, hogy valamely szabadon felfüggesztett mágneses test (például iránytű) a Föld bármely pontján Észak-Dél irányba áll be. A paraméterek a helytől és időtől is függnek, az ötévenként megszerkesztett mágneses térképek az egyenlő elhajlási (izogon), ill. lehajlási (izoklin) vonalakat tüntetik fel. A 90 fok lehajlással jellemzett mágneses pólusok nem esnek egybe a földrajzi pólusokkal, az északi mágneses sarok jelenleg az északi szélesség 78 fok 6. percén és a keleti hosszúság 70 fok 1. percén helyezkedik el.

    Mindezek a paraméterek hosszú periódusú szabályos változásokat, valamint véletlenszerű változásokat (mágneses viharokat) mutatnak. A mágneses tér lokális rendellenességei felszín alatti kőzetekre, érctelepekre utalnak.

    Alkotói:

    Ezeket teodolittal, iránytűvel, magnetométerrel vagy indukciós módszerekkel határozzák meg.

    A mágneses mező változásai[]

    A magnetoszféra megvédi a Föld felszínét a napszéltöltött részecskéitől. A Nappal szembeni oldalon összenyomódik az érkező részecskék hatására, a túloldalon pedig elnyúlik.

    A mágneses mező erőssége a Föld felszínén legkevesebb 30 mikrotesla (0,3 gauss) Dél-Amerika és Dél-Afrika egyes részein, legtöbb 60 mikrotesla (0,6 gauss) a mágneses sarkok körül, Észak-KanadábanAusztráliadéli részén és Szibériában.

    2003 októberében a Föld mágneses terét egy hatalmas napkitörés részecskehulláma érte el, amely intenzív geomágneses vihart idézett elő és szokatlan sarki fényt okozott.

    A National Geographic Online 2005. január 31-i cikke szerint a Dél-Atlanti Anomália területén a mágneses mező védőpajzsa az átlagosnál gyengébb. Ezen régióban még a relatíve alacsonyan szálló műholdak elektronikus berendezéseit is komoly meghibásodás érheti. Részben ezen anomáliával magyarázható, hogy az űrkutatási szakemberek egyre több figyelmet fordítanak bolygónk mágneses mezejére. Az 1999-ben felbocsátott dán mikroműhold, az Ørsted a mágneses, a 2000-es német CHAMP pedig a mágneses és a gravitációs mezővel kapcsolatban végez méréseket. Adataik szerint a veszélyzóna növekszik: az Atlanti-óceán déli részén és Brazílián kívül már az Indiai-óceán déli fele is egyre veszélyesebb a műholdak számára.

    A Föld mágneses védőpajzsa rohamosan gyengül. Amikor egy dán-francia kutatócsoport a dán Ørsted 2000-es adatait összehasonlította egy amerikai műhold, a Magsat húsz évvel ezelőtti méréseivel, azt találta, hogy ilyen ütemű gyengülés mellett a védőpajzs ezer éven belül eltűnik. A kutatók jelentős része a múltbéli adatok alapján a gyengülést egy közelgő pólusváltás előjeleként értékeli. Póluscsere átlagosan 200 ezer évente történik bolygónkon, ám a két pólusváltás között eltelt idő széles sávban mozog. A geológiai bizonyítékok szerint a Földön utoljára 780 ezer évvel ezelőtt következett be.

    E rejtélyes tendenciák miatt döntött az Európai Űrhivatal is egy, a bolygónk mágneses mezejét vizsgáló program elindítása mellett. A Swarm névre keresztelt küldetés 2009-ben indult útjára. A program során három műholdat lőttek fel, melyek pályája a pólusok felett halad. A Swarm A és a Swarm B műholdak párhuzamosan, egymástól 150 kilométer távolságban, kezdetben 450 kilométerrel a felszín felett vizsgálják a mágneses mező változásait. A műholdak folyamatosan lefelé ereszkedve a küldetés végén már csak 300 kilométer magasságban végeznek méréseket. A harmadik műhold, a Swarm C végig magasabban, körülbelül 500 kilométerre a felszín felett kering.

    Pólusváltozások[]

    hawaii lávaalakzatok vizsgálata alapján arra a következtetésre jutottak, hogy a Föld mágneses tere pólusváltozásokat szenved néhány tízezer évtől néhány millió évig tartó periódusok során, átlagosan 250 000 évenként. A legutóbbi ilyen esemény az ún. Brunhes-Matuyama pólusváltozás volt 780 000 évvel ezelőtt.

    A pólusváltozásokat előidéző mechanizmus még nem ismert. Néhány kutató olyan modellt készített a Föld magjáról, amelyben a mágneses mező nem teljesen stabil és a pólusok spontán módon vándorolhatnak egyik irányból a másikba. Más kutatók szerint a geodinamó először kialszik spontánul, vagy külső hatás következtében (ilyen például egy üstökös becsapódása), majd újraalakul az északi pólussal északon vagy délen. Azonban külső hatás nem lehet a pólusváltozások állandó okozója a becsapódási kráterek kora és a pólusváltozások ideje közötti eltérések miatt. Egy másik elmélet szerint a Föld magja nem vasból épül fel, hanem sokkal sűrűbb elemekből. Az itteni nukleáris reakciók okozzák a mágneses mező változásait.

    Mivel a Föld mágneses tere védi a földi élővilágot a világűrből érkező sugárzásokkal szemben, ezért a pólusváltások időtartama alatt az élőlények a mágneses tér megszűnése miatt védtelenné válnak.

    A mágneses mező érzékelése[]

    Az állatok (köztük legismertebbek a madarak és a teknősök) vonulásuk során a Föld mágneses pólusaihoz igazodnak.[1] Német és cseh kutatók szarvasmarhaeurópai őz és gímszarvasmegfigyelésével kimutatták, hogy az állatok legelés és pihenés közben is a mágneses észak-dél irányhoz igazodnak. Az érzékelés mechanizmusa egyelőre nem ismert.[2]

     

     


    Készíts ingyenes honlapot Webnode